LoopSeries LB 430 Detectors

Software operating manual

69691BA24 Rev.00 01/2025 Embedded Software from version 01.00.00

BERTHOLD TECHNOLOGIES GmbH & Co. KG

Calmbacher Str. 22 75323 Bad Wildbad, Deutschland www.berthold.com

> Telefon +49 7081 177-0 Fax +49 7081 177-100 industry@Berthold.com

Table of Contents

1 1.1 1.2	General Information Validity of the Operating Manual Structure of the Operating Manual						
2 2.1 2.2 2.3	Operation Operating Software. Software installation Start DTM with PACTware	7 7					
3	Main Menu: Online Parameterization						
3.1	Accessing the Main Menu: Online Parameterization						
3.2 3.3	General Information Menu: Identification						
3.3.1	Submenu: Identification Device/Modules						
3.4	Menu: Assistants						
3.4.1	Submenu: Assistant Quick Start Assistant						
3.4.2	Submenu: Assistant Application Assistant						
3.4.3	Submenu: Assistant Signal-Addon-Assistant						
3.4.4	Submenu: Assistant Adjust Assistant						
3.5	Menu: Setup						
3.5.1	Submenu: Setup Device						
3.5.2	Submenu: Setup Application						
3.5.3 3.6	Submenu: Setup Communication Calibration methods and curve types						
3.6.1	Application: Level						
3.6.2	Application: Density						
3.7	Menu: Security						
3.7.1	Submenu: Security Authentification						
3.7.2	Submenu: Security HART Specific Access						
4	Main Menu: Offline Parameter	80					
4.1	Accessing the Main Menu: Offline Parameter						
4.2	Backup - Transferring Device Settings to the Offline Parameter List						
4.3	Restore - Transferring Device Settings from the Offline Parameter List						
4.4	Parameter-Report	83					
4.5							
	Procedure for Duplicating Measurement Points						
5	Procedure for Duplicating Measurement Points	83					
5 5.1		83 85					
5.1 5.2	Procedure for Duplicating Measurement Points Main Menu: Measurement Accessing the Main Menu: Measurement Menu: Process Values	83 85 85 86					
5.1 5.2 5.2.1	Procedure for Duplicating Measurement Points Main Menu: Measurement Accessing the Main Menu: Measurement Menu: Process Values Submenu: Process Values Process Values	83 85 85 86 86					
5.1 5.2 5.2.1 5.2.2	Procedure for Duplicating Measurement Points Main Menu: Measurement Accessing the Main Menu: Measurement Menu: Process Values Submenu: Process Values Process Values Submenu: Process Values Device Variables	83 85 85 86 86 87					
5.1 5.2 5.2.1 5.2.2 5.2.3	Procedure for Duplicating Measurement Points Main Menu: Measurement Accessing the Main Menu: Measurement Menu: Process Values Submenu: Process Values Process Values Submenu: Process Values Device Variables Submenu: Process Values Signaling	83 85 86 86 87 88					
5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4	Procedure for Duplicating Measurement Points Main Menu: Measurement Accessing the Main Menu: Measurement Menu: Process Values Submenu: Process Values Process Values Submenu: Process Values Device Variables Submenu: Process Values Signaling Submenu: Process Values Process Trending	83 85 86 86 87 88 90					
5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3	Procedure for Duplicating Measurement Points Main Menu: Measurement Accessing the Main Menu: Measurement Menu: Process Values Submenu: Process Values Process Values Submenu: Process Values Device Variables Submenu: Process Values Signaling Submenu: Process Values Process Trending Menu: Active Configuration	83 85 85 86 86 87 88 90 92					
5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.3.1	Procedure for Duplicating Measurement Points Main Menu: Measurement Accessing the Main Menu: Measurement Menu: Process Values Submenu: Process Values Process Values Submenu: Process Values Device Variables Submenu: Process Values Device Variables Submenu: Process Values Signaling Submenu: Process Values Process Trending Menu: Active Configuration Submenu: Active Configuration Active Configuration	83 85 86 86 86 87 88 90 92 92					
5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3	Procedure for Duplicating Measurement Points Main Menu: Measurement Accessing the Main Menu: Measurement Menu: Process Values Submenu: Process Values Process Values Submenu: Process Values Device Variables Submenu: Process Values Signaling Submenu: Process Values Process Trending Menu: Active Configuration	83 85 86 86 87 88 90 92 92 93					
5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.3.1 5.4 5.4.1	Procedure for Duplicating Measurement Points Main Menu: Measurement Accessing the Main Menu: Measurement Menu: Process Values Submenu: Process Values Process Values Submenu: Process Values Device Variables Submenu: Process Values Signaling Submenu: Process Values Process Trending Menu: Active Configuration Submenu: Active Configuration Active Configuration Menu: System/Sensor Info Submenu: System/Sensor Info System/Sensor Info	 83 85 86 86 87 88 90 92 93 93 					
5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.3.1 5.4 5.4 5.4.1 6	Procedure for Duplicating Measurement Points Main Menu: Measurement Accessing the Main Menu: Measurement Menu: Process Values Submenu: Process Values Process Values Submenu: Process Values Device Variables Submenu: Process Values Signaling Submenu: Process Values Signaling Submenu: Process Values Process Trending Menu: Active Configuration Submenu: Active Configuration Active Configuration Menu: System/Sensor Info Submenu: System/Sensor Info System/Sensor Info Main Menu: Diagnosis	83 85 85 86 86 87 88 90 92 92 93 93 93 93					
5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.3.1 5.4 5.4.1 6 6.1	Procedure for Duplicating Measurement Points Main Menu: Measurement Accessing the Main Menu: Measurement Menu: Process Values Submenu: Process Values Process Values Submenu: Process Values Device Variables Submenu: Process Values Signaling Submenu: Process Values Process Trending Menu: Active Configuration Submenu: Active Configuration Active Configuration Menu: System/Sensor Info Submenu: System/Sensor Info System/Sensor Info Submenu: System/Sensor Info System/Sensor Info Main Menu: Diagnosis	83 85 86 86 87 88 90 92 93 92 93 93 93 93 93					
5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.3.1 5.4 5.4 5.4.1 6	Procedure for Duplicating Measurement Points Main Menu: Measurement Accessing the Main Menu: Measurement Menu: Process Values Submenu: Process Values Process Values Submenu: Process Values Device Variables Submenu: Process Values Signaling Submenu: Process Values Process Trending Menu: Active Configuration Submenu: Active Configuration Active Configuration Menu: System/Sensor Info Submenu: System/Sensor Info System/Sensor Info Main Menu: Diagnosis Accessing the Main Menu: Diagnosis Menu: Device Status Events	83 85 86 86 87 88 90 92 93 92 93 93 93 93 93					
5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.3.1 5.4 5.4.1 6 6.1 6.2	Procedure for Duplicating Measurement Points Main Menu: Measurement Accessing the Main Menu: Measurement Menu: Process Values Submenu: Process Values Process Values Submenu: Process Values Device Variables Submenu: Process Values Signaling Submenu: Process Values Process Trending Menu: Active Configuration Submenu: Active Configuration Active Configuration Menu: System/Sensor Info Submenu: System/Sensor Info System/Sensor Info Submenu: System/Sensor Info System/Sensor Info Main Menu: Diagnosis	83 85 86 86 86 87 88 90 92 93 92 93 93 93 93 94 95 95					
5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.3.1 5.4 5.4.1 6 6.1 6.2 6.2.1 6.2.2 6.2.3	Procedure for Duplicating Measurement Points Main Menu: Measurement Accessing the Main Menu: Measurement Menu: Process Values Submenu: Process Values Process Values Submenu: Process Values Device Variables Submenu: Process Values Signaling Submenu: Process Values Process Trending Menu: Active Configuration Submenu: Active Configuration Active Configuration Menu: System/Sensor Info Submenu: System/Sensor Info System/Sensor Info Main Menu: Diagnosis Accessing the Main Menu: Diagnosis Menu: Device Status Events Tab: Device Status Events Active Event	83 85 86 86 86 87 88 90 92 93 93 93 93 93 94 95 95 96					
5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.3.1 5.4 5.4.1 6 6.1 6.2 6.2 6.2.1 6.2.2	Procedure for Duplicating Measurement Points Main Menu: Measurement Accessing the Main Menu: Measurement Menu: Process Values Submenu: Process Values Process Values Submenu: Process Values Device Variables Submenu: Process Values Signaling Submenu: Process Values Process Trending Menu: Active Configuration Submenu: Active Configuration Active Configuration Menu: System/Sensor Info Submenu: System/Sensor Info System/Sensor Info Main Menu: Diagnosis Accessing the Main Menu: Diagnosis Menu: Device Status Events Tab: Device Status Events Active Event Tab: Device Status Events Event Overview	83 85 86 86 87 88 90 92 93 93 92 93 93 95 95 96 97 98					

6.2.6	Tab: Device Status Events Event Simulation	100
6.3	Device Specific Event Codes	101
6.4	Application Specific Event Codes	106
6.4.1	Application Level	106
6.4.2	Application Density	107
6.5	Menu: Configuration History	108
6.5.1	Tab: Configuration History Configuration History	
6.5.2	Tab: Configuration History HART Specific	108
6.6	Menu: HART Specific	109
6.6.1	Tab: HART Specific HART Diagnostics	109

General Information

1.1 Validity of the Operating Manual

The operating manual is valid from the delivery of the Berthold product to the user until its disposal. The version and release date of this operating manual can be found at the bottom of each page. No modification service is performed by the manufacturer Berthold.

The manufacturer reserves the right to make changes to this operating manual at any time without prior notice or justification.

HINWEIS

The current revision of the software manual replaces all previous versions.

Target Group

This operating manual is directed at qualified specialist personnel who are familiar with handling electrical and electronic assemblies as well as with communication and measuring techniques.

Specialist personnel refer to those who can assess the work assigned to them and recognize possible dangers through their specialist training, knowledge and experience as well as knowledge of the relevant regulations.

Storage Location

This operation manual, along with all product-specific documentation relevant to the respective application, must always be accessible near the device.

Copyrights

This operation manual contains copyright-protected information. No chapter may be copied or reproduced in any form without prior approval from the manufacturer.

1.2 Structure of the Operating Manual

This operating manual is divided into chapters. The order of the chapters is designed to help you quickly and safely familiarize yourself with the operation of the device.

Formatting Style

Identifier	Description	Example
Quotation marks	Field in the software inter- face	"Linear"
Vertical line	Path specification	Setup Device
Gear icon	Clickable button	⁹ Reset to Default
Round brackets	Image reference	Attach the plug (Fig. 1, Pos. 1)

In the software description, the term "clicking" is used if a process is to be activated. This also refers to the pressing of a button (key) or an area on the touch display if a mouse is not used for controlling.

Symbols Used

NOTICE

If this information is not observed, deterioration in the operation and/or property damage may occur.

IMPORTANT

Sections marked with this symbol point out important information on the product or on handling the product.

Provides tips on application and other useful information.

2 Operation

2.1 Operating Software

To configure and parameterize the detector via a PC, the connection must be established. The connection through the interface to the detector is described in the detector's operating manual. An FDT (Field Device Tool) frame application must be installed on the PC, with which the DTM (Device Type Manager) can be opened.

The following describes the operation via the FDT frame application PACTware. To use PACTware, the following software prerequisites must be met:

- Windows® operating system (32-bit XP, 32-bit Vista, 32-bit and 64-bit Windows® 7, and Windows® 10/11) with administrator rights for installing the operating software
- Installed Microsoft .NET Framework
- PACTware installation files
- Berthold DTM Library

2.2 Software installation

PACTware (Process Automation Configuration Tool) is a manufacturer- and fieldbus-independent software for the easy operation of field devices. The latest version can be downloaded for free from the website <u>www.pactware.com</u>. Berthold provides a DTM Library, which allows the installation of applications for density and level measurement.

PACTware

⊮ PACT₩	re 5.0 Setup — 🗆 🗙
=	Welcome to the PACTware 5.0 Setup Wizard
	The Setup Witzard will Install PACTware 5.0 on your computer. Click Next to continue or Cancel to exit the Setup Witzard.
	Back Next Cancel

Fig. 1 PACTware installation.

Berthold DTM Library

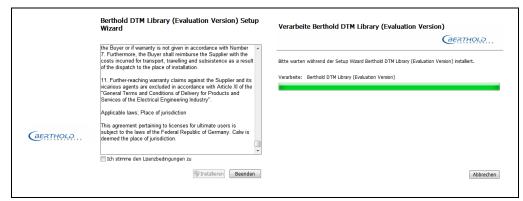


Fig. 2 DTM Library installation.

2.3 Start DTM with PACTware

After successful installation, the DTM can be started via PACTware.

Ţ ^ψ RcChard 1		Home			×				
			> Proje		€¶,	» Add doxte:	Ca (a) (d)	•	- D (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
PACTware 📢						Barte	E E Face E Annual Cation 🖉 Communication HART		
PACTurare **	< COMF And Soulice	<u>A</u> 4	ø						
Project : Destrong = €_ccold @ :		K Q Reset al filters		РАСТИ	are V⁴¹	10TMs weakative.			
	 전 10.430 Density 전 10.410 Density 전 전 10.410 Density 	Device INVETIS	E Itorie R; HA., Berthold R; HA., Berthold R; HA., Berthold K; GmbH	one month ago 2 days ago 23 thours ago 2 days ago	DTM specific Level Trave DTM specific				
PACTware	4 OTHs available.								
						-			

Fig. 3 Starting PACTware.

- 1. Click on "New Project".
 - > The installed DTMs will be displayed in the right window.
- **2.** Click on the symbol \oplus to display the installed DTM applications.
- 3. Click on the DTM application of the connected detector.
 - ► The DTM application will be added to the project.

4. Ensure that the correct COM port of the USB-HART interface is set under "Parameter".

📢 PACTware 6.1			∧ COM3 Parameter
	8		Address Churnel Denketyp HART Communication
>	>>	COM3 Add device	Communication interface HART modem 🗸
Project	:	Address	Serial Interface COM3 (MACTek VIATOR USB HART Modern)
		Channel Device type HART Communica	HART protocol Master Preamble 5
Device tag			Number of communication
= 🃞 сомз	0:-		Address scan Start address 0 ~
		Add device	End address 0 ~ ~ Communication timeout 2 ~ seconds
		Remove device	
		Exchange device	Multimaster and Burst mode support
		_	
		Rename	
		Сору	
		Connect	
		Parameter	
		Topology Scan	
		Additional functions 🔸	
		Properties	
		Print	
		PINIC	

Fig. 4 Checking the COM-Port in PACTware 6.1.

- **5.** Select the added DTM and establish the connection by right-clicking and selecting "Connect".
 - ▶ Upon successful connection, green dots ○ will be displayed.
- 6. Start the DTM with a double-click.
 - > The DTM will be displayed in online mode.

PACTeare 6.1		A 4 ®	×	
	≫ 🗸 L8_430_Density Add			
oject	:			
Device Leg		X Q, Reset all filters		
= 🛧 LB_430_Density	c/, : ne denice Denice	: Type : Protocol : Vender : Lationed	: Group :	
Exchan	nge device			
Renam				
		1 ⁴ PACIwate 5.1		- 0
Correct		E, Q	A 🗉 🕸	A 0
	iom device io device	V IR_100_Density		×
Parame		Project 🚦		
	onal functions +	oniste ∧ •€ com		
Proper		• ∧ • • COMA (2) : • ∧ 18.430.0xxx8y (2) :		
	No DTMs available.			
PACTware				
PACTware	C69		Contests creation active. One moment please.	
		PACTware		

Fig. 5 *Start the DTM.*

IMPORTANT

It is possible to transfer the parameters of a connected detector to the offline menu. The configuration saved in this way can then be transferred to another detector in online mode. For more details, refer to Chapter 4 of this operating manual – Main Menu Offline Parameters.

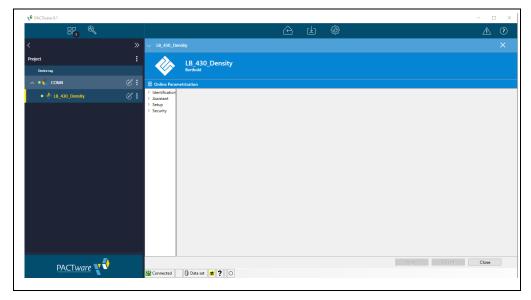


Fig. 6 Running DTM in online-mode.

3

Main Menu: Online Parameterization

3.1 Accessing the Main Menu: Online Parameterization

Accessing the online parameterization of the device is done through the main menu tree of the respective connected application. In PACTware 6.1, right-click on "Parameter" and then select "Online Parameterization". Please note that the representation of the main menus for accessing the application may vary across different host systems.

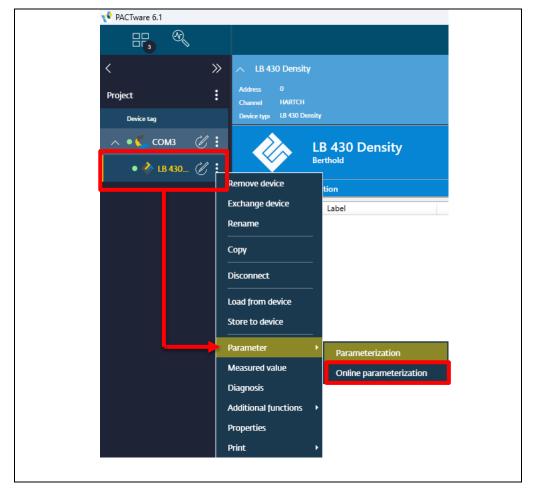


Fig. 7 Accessing Online Parameterization in PACTware 6.1.

3.2 General Information

NOTICE

Changes to the configuration and parameters may affect the behavior of any connected controllers and can lead to unintended operating states.

Therefore, changes to the configuration and parameters must not be made without a thorough understanding of this operating manual, as well as a clear understanding of the behavior of a connected controller and the potential impacts on the controlled operating process.

IMPORTANT

The communication between the detector and the USB-HART interface is limited to 1200 baud. Accordingly, there is a loading time for data retrieved from the detector.

	▲ 些 ^(®)	<u>A</u> (2)
—		
V LB_430_Density		
LB_430_Density Berthold		
Online Parametrization		
		Apply, Frent Close

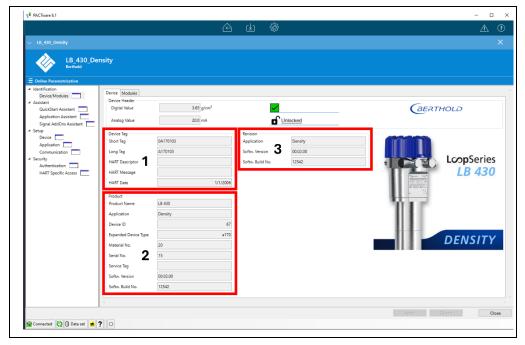
Fig. 8 *Menu Structure of the DTM in Online-Mode.*

Symbols / Display- and Input fields

Menüfenster	
20. Digital Value [g/cm ³]	Display Field / Input Field. When hovering over display and input fields, a help text will be displayed.
1	The value cannot be displayed or is invalid.
?	The value / parameter has not been updated and is being loaded from the detector.
9	A query from the assistant will be displayed.
0 00	Buttons with this symbol trigger the displayed command when clicked.
1	The value has been entered / changed and has not yet been sent to the detector via the % Apply button.
	The detector is in operation without any malfunction.
×	This symbol appears in the case of a serious malfunction. The measurement has been stopped.

•	This symbol appears when either maintenance work (e.g., calibration, curve adjustment, or backup/restore) has been initiated or the detector has been switched to simulation mode.
?	This symbol appears when one or more parameters are outside their manufacturer-specified limits.
\$	This symbol indicates that the device or the measurement point requires maintenance, such as the replacement of the radiation source.
63	Indicates the establishment of a connection with the de- vice.
Buttons	
% Close	Closes the DTM window of the detector.
[%] Abort	During an installation wizard, the routine can be aborted. After aborting, the parameters that have already been en- tered are saved and restored upon resumption.
Next	During the execution of a wizard, this button can be used to open the next window of the routine.
[%] Apply	All modified inputs will be applied and sent to the detector.
⁹ Revert	All changes made since the last save will be undone. This applies only to the displayed submenu.

IMPORTANT


A device data backup can be performed via the DTM after calibration. Additionally, a backup of the detector parameters can be transferred to a new detector. The backup/restore process is described in detail in Chapter 4 of this operating manual.

3.3 Menu: Identification

3.3.1 Submenu: Identification | Device/Modules

3.3.1.1 Tab: Identification | Device/Modules | Device

The tab **"Device"** provides an overview of the configured characteristics of the measuring point (Fig. 9, Pos.1), the factory settings of the detector (Fig. 9, Pos.2), as well as information about the installed software version and the build number (Fig. 9, Pos.3).

Fig. 9 *Tab: Identification* | *Device/Modules* | *Device.*

3.3.1.2 Tab: Identification | Device/Modules | Modules

The tab **"Modules"** provides information about the installed software version and the build number (Fig. 10, Pos. 1) and an overview of the electronics revision as well as the installed software version of all connected modules such as the frontend module, the main module as well as the optional display, if connected (Fig. 10, Pos. 2 and Pos. 3).

V PACTivare 6.1							- 0	×
			ß	Ŀ	\$		A (\odot
LB_430_Density								
LB_430_De Berthold	nsity							
Online Parametrization Identification	Device Modules							
Device/Modules Assistant	Device Header				_		_	
QuickStart Assistant	Digital Value	3.66 g/cm8				Ci Ci	BERTHOLD	
Application Assistant	Analog Value	20.0 mA						
✓ Setup Device	Revision			Modules				11
Application	Application	Density		Electronics F Type As	ev. sy-ID Assy. Charge No. Rev	•		
Communication	Softw. Version	00.02.00			7633 3	2		
Authentication HART Specific Access	Softw. Build No.	12542		0	0			
						No. Softw. 3		
😰 Connected 🖏 () Data set 😹	?					Assiy	Revent Clos	se

Fig.10 Tab: Identification | Device/Modules | Modules.

3.4 Menu: Assistants

The assistants allow you to start up the detector in a guided manner without extensive prior knowledge. If additional functions from the submenus are required, these can also be activated and edited after calibration via the Quick Start Assistant.

NOTICE

Errors in calibration or parameter settings can lead to incorrect measurement results. This may potentially cause production downtime or damage to the system. For verification, we recommend performing a simulation to check the calibration points.

In general, it is recommended to have the commissioning carried out by Berthold.

Tip

In the assistant windows, the storage paths (e.g., **Quick Start Assistant > Sensor > Sensor Parameters**) of the settings and entered values in the Setup menu are displayed.

3.4.1 Submenu: Assistant | Quick Start Assistant

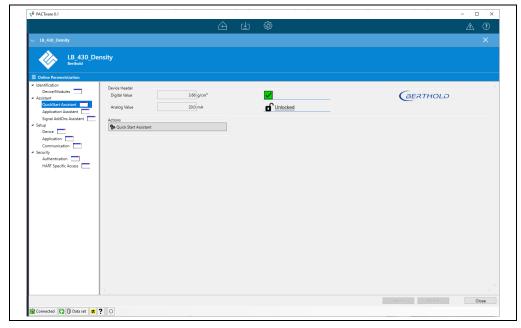


Fig. 11 Submenu: Assistant / Quick Start Assistant.

After clicking the **Quick Start Assistant** button, a window with the query routine will open. In the first step, there is the option to retrieve existing data from the measurement parameter set to adjust only individual parameters. If the data is not retrieved, the query routine will start with a pre-configured standard parameter set. For a new calibration, the desired measurement mode must first be selected. These modes, of course, differ between the "Density" and "Level" applications.

3.4.1.1 Copy of the measurement data into the calibration data

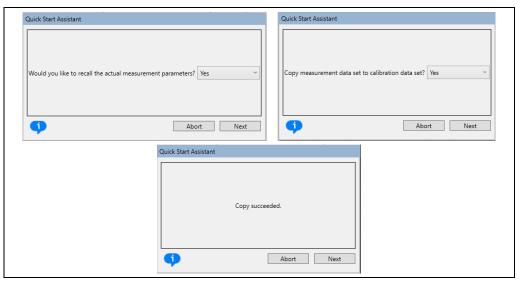


Fig. 12 Submenu: Assistant | Quick Start Assistant. Step 1: Copy of the measurement data into the calibration data.

In the first step of the guided commissioning, you will be asked whether you want to transfer an existing measurement parameter set into a valid calibration parameter set by copying it. This is particularly useful if the device is already calibrated, and only specific points need to be modified.

Calibration data set	The calibration data set describes all the data that has been entered for the calibration of the measurement but has not yet directly impacted the measurement itself. To apply this data, it is essential to use the Calibrate function
Measurement data set	The measurement parameter set describes all the data that currently affects the ongoing measurement. Changing the measurement parameters leads to a changed measurement result even without recalibration. (e.g., offset and scaling of the calibration curve).
Recall	A recall transfers the current measurement parameter set into a calibration parameter set. This ensures that any pa- rameters modified in the meantime are included in the new calibration.

3.4.1.2 Application density: selection of measurement mode

Quick Start Assistant		
QuickStart Assistant > Select application you		^
Application	Density	~
	Density	
	Concentration	
	Solid Content	~
<		>
•	Abort Back	Next

Fig. 13 Submenu: Assistant | Quick Start Assistant. Step 2: Selection of Measurement Mode.

NOTICE

If you selected the option "Yes" in the previous step and generated calibration data from the measurement parameter set, this step is no longer necessary. Also, if application level is selected, this step is not necessary

Density	Select "Density" if the detector is used for density meas- urement. For more information about this measurement mode, refer to Chapter 5 Calibration Methods and Curve Types, Subchapter 5.2.1 Measurement Mode Density.
Concentration	Select "Concentration" if the detector is used for concen- tration measurement. Solid concentration refers to the mass of solids within the total volume of the suspension. The unit (e.g., g/l) should not be confused with density. For more information about this measurement mode, re- fer to Chapter 5 Calibration Methods and Curve Types, Subchapter 5.2.3 Measurement Mode Concentration.
Solid Content	Select "Solid Content" if the detector is used for measur- ing the solid content. Solid content refers to the mass of solids relative to the total mass of the suspension. This re- sults in the unit %, understood as weight percent [wt%/wt]. For more information about this measurement mode, refer to Chapter 5 Calibration Methods and Curve Types, Subchapter 5.2.5 Measurement Mode Solid Con- tent.

3.4.1.3 Input of identification parameters

Quiek Start Assistant		
QuickStart Assistant > Devi	ice > Identification	^
Short Tag	0A170103	
Long Tag	A170103	
HART Descriptor		
HART Message		
HART Date	6	/6/2024
<		>
•	Abort Back	Next

Fig. 14 Submenu: *Assistant | Quick Start Assistant*. Step 3: Input of identification parameters of the measurement point.

In the window Quick Start Assistant | Device | Identification, information about the measuring point is entered.

Short Tag	Optional entry of a short description for the measuring point. Any text is allowed, with a maximum of 8 charac-ters.
Long Tag	Optional entry of a long description for the measuring point. Any text is allowed, with a maximum of 32 charac-ters.
HART Descriptor	Optional entry of a detailed description of the measuring point, which will be transmitted via the HART protocol. Any text is allowed.
HART Message	Optional entry of a device message, which will be trans- mitted via the HART protocol. Any text is allowed.
HART Date	Entry of the date to be transmitted via the HART protocol. It is recommended to use the commissioning date.

3.4.1.4 Input of local system time

In the "Date/Time" window, the current date and time must be entered. The correct date is required for the automatic decay compensation of the isotope. Since the activity of the radiation source decreases over time, the calibration count rates are automatically compensated based on the date.

QuickStart Assistant >	> Device > Date/Time
Country Code	DE ~
Year	2024 yr
Month	June ~
Day	6 d
Hour	11 h
Minute	20 min
Second	54 s
<	>

Fig. 15 Submenu: Assistant | Quick Start Assistant. Step 4: Input of local system time

3.4.1.5 Input of measuring units

By clicking on the respective dropdown list, the available units for the measurements are displayed. The selected unit will be used in the display and in the calibration settings.

Quick Start Assistant		
QuickStart Assistant > De	evice > Units	^
Density Unit	g/cm³	~
Product Density Unit	g/cm³	~
Sensor Unit	cps	~
Temp. Unit	℃	~
Length Unit	m	~
Voltage Unit	V	
Current Unit	mA	• v
<		>
•	Abort Back	Next
-		

Fig. 16 Submenu: *Assistant | Quick Start Assistant*. Step 5: Input of measuring units.

3.4.1.6 Input of sensor parameters

Quick Start Assistant	
QuickStart Assistant >	Sensor > Sensor Parameter
Det. Code	1
Det. Code Descriptor	CrystalSENS Nal (50x50)
Nuclide	Cs-137 ~
	Abort Back Next
	Abort back IVext

Fig 17 Submenu: *Assistant | Quick Start Assistant*. Step 6: Input of detector code and nuclide.

By setting the detector code, internal device parameters are adjusted to the used scintillator size, the applied control, and the selected isotope. The correct detector code for the current configuration can be selected from the dropdown list or found in the table below. The correct detector code is pre-set at the factory, and usually, no change is required. If the displayed detector code does not match the correct measurement setup, it can also be changed at this point.

IMPORTANT

A change of the detector code between point and rod configurations (e.g., Det. Code $0 \rightarrow$ Det. Code 22) is difficult to reverse. In this case, please contact Berthold Service. Make sure that the correct detector code is set, and if necessary, only change it within the used detector type.

Detector Code	Measurement Control and Nuclide	
CrystalSens Point Detector Nal 50x50 mm		
0	Ratio Control, Cs-137	
1	Cosmic Control, Cs-137 oder Co-60	
2	Ratio Control, Co-60	

NOTICE

Incorrect settings can negatively affect the long-term stability of the device and lead to other malfunctions.

3.4.1.7 Entry/Input of the background radiation

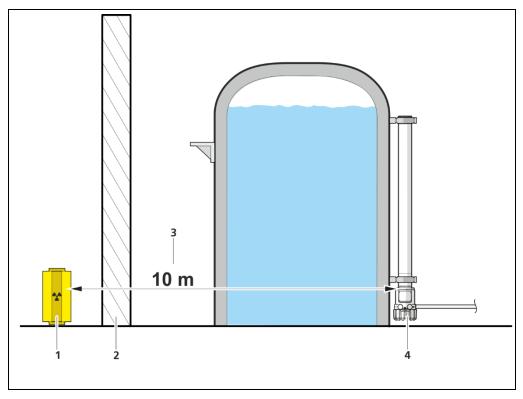

Quick Start Assistant			
QuickStart Assistant > Calib	pration > Background	^	
Background	45 cps		
<		>	
Abort	Back Next	Read-In	
Quick Start Assistant			
QuickStart Assistant > Calib	oration > Background Read-In	^	
Background	45 cps		
Read-In Time	60 s		
Count-Rate Deviation	0.1 %	~	
	Abort Exit	Next	

Fig. 18 Submenu: *Assistant | Quick Start Assistant*. Step 7: Entry or input of the background radiation.

Background	The background count rate refers to the count rate meas- ured by the detector without the influence of the used ra- diation source. This count rate originates from the loca- tion-dependent natural background radiation. Accurate recording of the background count rate allows for proper decay compensation, thus influencing the long-term sta- bility.
	Before reading the background count rate, any influences from artificial sources, including the radiation sources used for measurement, must be excluded to avoid devia- tions. The measurement duration in seconds is entered via the Read-In Time button. The longer the read-in time is set, the more accurate the result will be. A maximum devi- ation between two consecutive read-in operations can also be specified.
	The reading of the background count rate will automati- cally end once the system has reached either the desired read-in time or a smaller deviation. The background count rate value can also be entered manually if it is known.

NOTICE

Even with a closed shield (Fig. 19, Pos. 1), the detector can still detect measurable radiation, which can distort the measurement of background radiation. Therefore, it is recommended to position the detector (Fig. 19, Pos. 4) at an appropriate distance (approximately 10 m, Fig. 19, Pos. 3) during the determination of the background count rate, or to shield it appropriately, for example, with a concrete wall (Fig. 19, Pos. 2).

Fig. 19 Recommended setup to determine the background radiation.

3.4.1.8 Application density: Input of calibration settings

The following provides a brief explanation of the calibration settings that can be made for measuring product density. The exact calibration settings for the density applications depend heavily on the desired measurement parameter and its calculation. A detailed explanation of the calibration methods used, and their derivations can be found in Chapter XX of this user manual.

	Selection of the calculation method	
	Quick Start Assistant	
	QuickStart Assistant > Calibration > Cal.Settings Setup Method/Curve/Points	
	Method Multipoint I-Point Multipoint Direct Entry	
	Abort Back Next Cal.Points	
	Direct Entry	
Quick Start Assistant		
QuickStart Assistant > Calibration > Coefficient	ts Quick Start Assistant	
	QuickStart Assistant > Sig.Condition > Ranges/Damping	
Coeff. 0	0.000e+000	
Coeff. 1	0.000e+000 Upper Range Val. 2.00 g/cm ³ 0.000e+000 Lower Range Val. 1.00 g/cm ³	
Coeff. 3	0.000e+000 Time Constant 30 s	
<		
Abort	Back Next Abort Back Next	
	1-Point	
Quick Start Assistant	Quick Start Assistant	
QuickStart Assistant > Calibration > Mea		
Distance	0.300 m Absorption Coeff. 6.600e-003 m ² /kg	
<		
Abort	t Back Next Abort Back Next	
	Multipoint	
Quick	Start Assistant	
Qu	uickStart Assistant > Calibration > CurveType	
Me	ethod Multipoint ·	
Cu	urve Type Linear *	
	Linear Square	
<	Cubic	
9	Abort Next	

Fig. 20 Submenu: *Assistant | Quick Start Assistant*. Step 8: Input of calibration settings for density measurements.

Method	
Direct Entry	If the coefficients of the calibration equation are known, they can also be entered directly. This is the case, for example, if the measurement has already been calibrated once, and the coefficients from the previous calibration can be used. When selecting direct entry, valid coefficients must be provided. The type of calibration curve for direct entry corresponds to the number of coefficients entered (2 coefficients - Linear, 3 coef- ficients - Quadratic, 4 coefficients - Cubic).
1-Point	For this calibration method, only one calibration point is re- quired. To obtain a calibration equation, the measurement path as well as the linear absorption coefficient of the me- dium to be measured must also be specified. This calibration method is particularly useful when, for example, no samples can be taken for density measurement on a pipeline (e.g., due to high flow rates), so no reference is available. In this case, a one-point calibration can be performed with water, and the absorption coefficient can be adjusted between the values of [-10, 10], so that the resulting measurement effect meets the desired conditions.
Multipoint	Recommended calibration method when enough calibration points, i.e., count rate-process value pairs, can be measured. A multi-point calibration can be performed with at least 2 and a maximum of 11 calibration points.

Curve Type

For the density application, the type of calibration curve defines the function to which the measured calibration data should be fitted and is only selectable in the case of multi-point calibration.

Reasons for changing the curve type can include more complex container geometries or density fluctuations in the product to be measured. In such cases, it is possible to adjust the calibration curve accordingly to achieve more accurate measurements.

Linear	This option is used when at least two value pairs are available. This curve type should also be used when multiple calibration points are measured very close to each other, as in this case, the entire measurement range is not covered.
Quadratic	The quadratic calculation method can be selected when at least 3 calibration points are available. It is only necessary in exceptional cases and is used when the "linear" calculation method results in measurement deviations.
Cubic	The cubic calculation method should be used when the same conditions as for the quadratic calculation method apply, but at least 4 value pairs are available, and it is observed during operation that the quadratic calculation method results in measurement deviations in certain areas.

3.4.1.9 Application level: Input of calibration settings

The following provides a brief explanation of the calibration settings that can be made for measuring the level inside a vessel. The exact calibration settings for the level application depend heavily on the measurement arrangement used. A detailed explanation of the calibration methods and their derivations can be found in Chapter 3.6 of this user manual.

Selection of calculation n	nethod and curve type			
Quick Start Assistant				
QuickStart Assistant > Calibration > Cal.Se Setup Method Method 2-Point 1-Point Multipoint Abort	ettings			
1-Poi				
	Quick Start Assistant			
QuickStart Assistant > Calibration > Measuring Path	QuickStart Assistant > Calibration > Product Conditions			
Distance 0.300 m	Absorption Coeff. 6.603e-003 m²/kg			
	Product Density 1.000 g/cm ³			
<pre></pre>				
i Abort Back Next	1 Abort Back Next			
Quick Start Assistant	nt Quick Start Assistant			
Quick Start Assistant QuickStart Assistant > Calibration > Cal.Settings Setup Curve	QuickStart Assistant > Calibration > Cal.Points > Info			
	Method 2-Point v			
Curve Type Linear 🗸	Curve Type Linear v			
Inverted Curve False ~	Inverted Curve False v			
	Points Required 2 Points v			
< >	<			
Abort Back Cal.Points Next	Abort Exit Edit Read-In			
Multip	Multipoint			
Quick Start Assistant	Quick Start Assistant			
QuickStart Assistant > Calibration > Cal.Settings Setup Curve	QuickStart Assistant > Calibration > Cal.Points > Info			
Curve Type Linear 🗸	Method Multipoint V			
	Curve Type Linear v			
Inverted Curve False ~	Inverted Curve False v			
<	Points Required min. 3 max. 11 Points			
Abort Back Cal.Points Next	Abort Exit Edit Read-In			

Fig. 21 Submenu: *Assistant | Quick Start Assistant.* step 8: Input of calibration settings for level measurements.

Method	

1-Point	For this calibration method, only one calibration point is re- quired. In order to obtain a calibration curve, the measurement path as well as the linear absorption coefficient of the medium to be measured must also be specified.
2-Point	Exactly two calibration points must be entered. The calibration curve is linearly interpolated between these two points. For this type of calibration, it is sensible to choose two calibration points that span the entire fill level range (0% and 100%).
Multipoint	Multiple calibration points (minimum 3, maximum 11) can be entered. Linear interpolation is performed between the individ- ual calibration points. This calibration method provides the best precision in any case.

NOTICE

For the 2-point calibration method, the precision of the calibration curve is greatest at the two chosen calibration points. For intermediate values, deviations from the actual fill level values may occur.

Curve Type

For the level application, linear and exponential curve types can be chosen. In addition, for the level measurement, the display of an inverted calibration curve can be selected. This becomes relevant for backscatter measurement arrangements, where the radiation source and the detector are mounted on the same side of the container.

IMPORTANT

The selection of the exponential curve is only possible up to the 2-point calibration and is intended for special applications, such as absorption level measurement. In a multi-point calibration, the calibration curve is determined more accurately anyway, so an exponential curve is not needed.

Linear	When selecting a linear curve in the level application, two cali- bration points are required, which are connected by a straight line.
Exponential	When selecting an exponential curve type, an exponential function of the following form is used:
	$Prozesswert = a * e^{-\mu * d * CPS} + c$
	NOTE:
	This curve type should only be used for absorption level mea- surements, not for standard coverage measurements.

NOTICE

In a 1-point calibration, the second point of the exponential curve is calculated by the system using the provided attenuation coefficient (μ) and the measurement path (d).

3.4.1.10 Entry/Read-In of calibration points

Application density			
Quick Start Assistant	Quick Start Assistant		
How would you like to continue? Edit Mode Edit Mode Read-In Mode Exit	QuickStart Assistant > Cal.Points > Edit/Read-In Points Required min.2 Set Point Process Value 1.20 g/cm ^a Rate Value 2679		
Abort Next	Abort Exit Next		
Application level			

If you have selected the calibration methods 1-Point, 2-Point, or Multipoint, three options are available to you when editing the calibration table:

- Edit Mode: The calibration points are already known, for example, in the case
 of detector replacement and previously conducted calibration. In this case, the
 known calibration values can be manually entered into the table. To do this,
 press the SEdit button (Level application) or select "Edit Mode" from the
 drop-down menu (Density application).
- Read-In Mode: If the device is undergoing its initial commissioning, meaning the calibration values are entirely unknown, individual calibration values can be read in. To do this, press the Read-In button (Level application) or select "Read-In Mode" from the drop-down menu (Density application).

NOTICE

In this case, ensure that the minimum number of required calibration points is met for the chosen combination of calibration method and curve type.

3. Exit: If the SEXIT option is selected, a factory-set calibration table will be used. This will not correspond to the desired process calibration. This option should be chosen if the goal is, for example, dummy calibration for functionality testing.

3.4.1.11 Input of Signal Processing Parameters

Ranges/Damping

	Quick Start Assistant QuickStart Assistant > Sig.Condition > Ranges/Damping		
Upper Range Val. Lower Range Val. Time Constant	2.00 g/cm ³ 1.00 g/cm ³ 30 s		
•	Abort Back Next		

Fig. 23 Submenu *Assistant | Quick Start Assistant*. Step 10: Setting the Measurement Range and Time Constant.

Upper Range Value / Lower Range Value	Upper and lower process value limit: Under this setting, it can be specified which process value the maximum current of 20 mA and which process value the minimum current of 4 mA should correspond to.
Time Constant	The time constant determines the time window over which a moving mean value filter is applied to the meas- ured count rate, and is thus responsible for smoothing the output signal. With small time constants (minimum 1 sec- ond), faster process changes (approximately 3 seconds) can be better responded to, but the signal will contain more statistical noise. The default setting for the time constant is 20 seconds.

IMPORTANT

The system needs approximately 3 times the time constants to represent 99% of the process change. This means that with a default setting of 20 seconds, a process change can be fully represented after about 60 seconds. Therefore, the choice of the time constant is always a compromise between response time and signal smoothing.

Scaling

Quick Start Assistant			
QuickStart Assistant > Sig. Condition > Scaling			
Scaling Factor		1	
Scaling Offset	0.00 g/cm ³		
<		>	
•	Abort Back	Next	

Fig. 24 Submenu: Assistant | Quick Start Assistant. Step 11: Scaling and Offset.

Scaling Factor	A factor by which the measured value is multiplied. This allows for correcting deviations in the calibration. It ena- bles adjustment to changed operating conditions, such as deposits or wear on the pipe wall, without the need for recalibration. The default value is 1. The corrected display, considering the offset and factor, is calculated as follows: Display = Measured Value × Factor + Offset
Scaling Offset	If the measurement was calibrated in a different range, the calibration curve can be shifted parallel by specifying an offset, without the need to re-enter the calibration values.

3.4.1.12 Calibration

Qu	uick Start Assistant		
	How would you like to proceed?	Back ~ Back Exit without Calibration Calibrate Abort Next	

Fig. 25 Submenu: *Assistant | Quick Start Assistant*. step 12: Calibrate the device.

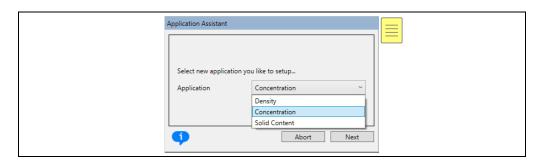
Calibrate	When the "Calibrate" option is executed by confirming with Pext , all entered data will be used to calibrate the device accordingly. This process may take a few seconds. During calibration, the device is set to the NAMUR status "Function Check". A successful calibration is indicated both by the pop-up "Calibration Successful" and by the device switching to the NAMUR status "OK".
Exit without Calibration	If the Exit without Calibration option is selected, the Quick Start Assistant will be exited without calibrating the device. The calibration settings are saved, and calibration can also be performed later through the setup menu.

3.4.2 Submenu: Assistant | Application Assistant

The LoopSeries LB 430 detector offers the ability to switch between the two main applications, level and density, as well as between the different measurement modes of the density measurement.

With the help of the application assistant, the desired standard application (level or density) can either be loaded from the external memory and the active application in the internal memory overwritten, or the selected measurement mode of the active application can be adjusted.

		Ġ	\$		
∨ LB_430_Density					×
LB_430_D	ensity				
Online Parametrization					
Identification Device/Modules Assistant	Device Header Digital Value	3.66 g/cm ³		GERTHOLD	
QuickStart Assistant Application Assistant Signal AddOns Assistant	Analog Value	20.0 mA			
Setup Device	Actions So Application Assistant				
Application Communication					
# Security					
Authentication 📩 HART Specific Access 🚞					
	. C				


Fig. 26 Submenu: Assistant | Application Assistant.

If the density application is active on the detector, the first step of the application assistant offers the choice between changing the measurement mode or uploading a different base application.

	Application Assistant
	Would you like to setup new default application? Yes 🗸
	Abort Next
Application Assistant	
	a new application(Density/Concentration/SolidContent) from internal flash Application (Internal Flash) application (e.g. Level) from external flash? Application (Internal Flash) Application (External Flash)
•	Abort Next

Fig. 27 Submenu: *Assistant | Application Assistant.* Selection between change of measurement mode or change of application (Only applicable for application density).

Application (In- ternal Flash)	Select the "Application (Internal Flash)" option to choose a different density measurement mode from the internal flash memory.
Application (Ex- ternal Flash)	Select the "Application (External Flash)" option to acti- vate a new base application from the external flash memory.

Fig. 28 Submenu: *Assistant | Application Assistant*. Switching the measurement mode from internal flash. Only within density application.

To upload a new base application, a Target Device Type must also be entered along with the application. This number ensures the correct addressing of the application on the external memory.

Enter application code TargetDeviceType	
Abort Next	

Fig. 29 Submenu: *Assistant | Application Assistant*. Switching the base application from external flash drive.

TargetDeviceType	Desciption
114	Level application
112	Density application

NOTICE

The external flash process takes approximately 5 to 10 minutes. After this time, briefly disconnect the device from the power supply and perform a restart with the corresponding new DTM.

Tip

-`@_-

After the flashing process, an event may be reported (F005: Memory corrupted [FRAM]). In this case, please perform a repair reset, which will clean up faulty memory units. Afterward, the device should be ready for use again. If the error persists, please contact Berthold Service.

3.4.3 Submenu: Assistant | Signal-Addon-Assistant

The Signal Add-on Assistant is used to activate various features to support the active measurement, such as the Rapid Switch – or the X-Ray Interference Protection (XIP) function.

IL 440 _Density IL 450 _Density In Constrained	- 0
Bender B	▲ ②
Conce Franchization Concernation Concernatio	×
4 Bendination Dovice/Models Device Header Digital Value 1.07 g/cm ² Image: Construction of the second of th	
Direct Modes Asstart DackGar Asstart DackGar Asstart Asstart DackGar Asstart Communication Communication HART Specific Access	
Quickaf Assistant Androg Value 200 mA Application Assistant Androg Value 200 mA * Step Droce Assistant Communication Communication Assistant Yearly Authentication Authentication HART Specific Access Assistant	
Single Add Xole Australia Single Add You Australia Application Add You Australia Active Add You Australia MATT Specific Access Add You Australia	, ,
<pre></pre>	
Divice Application Advances Constrained Co	
Communication Scale	
S Scority Anthenotopia and Anthenotopia	
Authentication	
Apply Boost	Close

Fig. 30 Submenu: Assistant | SignalAddon Assistant.

	Signal AddOns Assistant				
	Which Signal AddOn would you like to	activate?	None	v	
			None		
			Rapid Switcl XIP		
	•	Abo	ort	Next	
Signal AddOns Assistant		Signal AddO	Ins Assistant		
AddOn Assistant > Rap	id Switch	AddOn A	Assistant > XIP		
Factor	4	Delay Tir	ne		4
Pactor	*	Freezing	Time		20 s
		Sigma Fa	ictor		10
<	~	Interfere	nce Factor		2
	Abort Back Next			Abort	Back Next

Fig. 31 Submenu: Assistant | SignalAddon Assistant. Activation of Rapid Switch or XIP.

Rapid Switch	The activation of the rapid switch function is recom-
	mended when process values can change very quickly and sporadically (e.g., slurry detection in boreholes). When
	such a rapid process change is detected, the fast switching is automatically activated and sets the time constant to
	1/10 of the set value, allowing the control unit to react

	more effectively to this process change. When activating fast switching, only the sigma value needs to be defined. This specifies the factor by which the count rate must change within two output cycles to activate the rapid switch function.
	Example calculation: The default value for sigma is 4.0, meaning the count rate must increase or decrease by a factor of 4 within two measurement cycles to activate fast switching.
XIP	 Sup - short for "X-Ray Interference Protection," describes an internal function of the detector that detects stray radiation and protects both the measurement and the device from such interference. This function is particularly important when, for example, welding inspections are frequently carried out at the installation site. When stray radiation is detected with the XIP function activated, the detector will stop measuring for a certain period, and the measurement value will be frozen. This ensures that both the internal decay compensation and the measurement itself are not affected. Additionally, the detector is effectively protected from premature aging. To activate the XIP function, the following settings must be made:
	 Delay Time: Specifies the time after which XIP should be triggered when stray radiation is detected. The de- fault value is set to 4 seconds.
	 Freezing Time: Specifies the time the measurement value should remain frozen after the delay time. A de- fault of 20 seconds is recommended.
	 Sigma Factor: Defines a process signal-dependent count rate at which XIP should be activated.
	 Interference Factor: Defines a process signal-depend- ent threshold count rate at which XIP should be deac- tivated after the freezing time.

3.4.4 Submenu: Assistant | Adjust Assistant

With the help of the Adjust Assistant, calibration curves can be modified without the need to re-enter or re-read calibration data. This makes it easier, for example, to correct wall effects or avoid re-calibration after the replacement of the radiation source.

Level Adjust Assistant		
Select Adjust Mode to b Adjust Mode	Lower Point Lower Point Upper Point Standard	
•	Abort Next	
Level Adjust Assistant		1
Select Edit/Auto Read-Ir	1	
Adjust Mode	Edit 👻	
	Edit Read-In	
•	Abort Next	
Level Adjust Assistant		
Adjust Mode	Standard	
Adjust Level	0.00 %	
Adjust Rate	0 cps	
<	~	
•	Abort Adjust	

Fig. 32 Submenu: Assistant | Adjust Assistant.

Lower Point	Use this function if you:
	 Replace the radiation source and a curve with multiple calibration points has been entered.
	 Want to calibrate the measurement with a calcu- lated curve and only a blank adjustment, possibly with a full adjustment.
	Changes made through the Lower Adjust also affect the entire calibration curve and will require the execution of Calibrate at the end.

Upper Point	Use this function if you want to adjust the entire calibra- tion curve with an alignment of the upper calibration point.
	Changes made through the Upper Adjust also affect the entire calibration curve and will require the execution of Calibrate at the end.
Standard	Calculates a new calibration curve based on a pair of val- ues (Adjust Level & Adjust Rate) and the stored calibration table. The new calibration table will then overwrite the existing one.
	Changes made through the Standard Adjust also affect the entire calibration curve and will require the execution of © Calibrate at the end.

NOTICE

Ì

The Adjust Assistant is only relevant for the level application and cannot be selected in the density application.

3.5 Menu: Setup

3.5.1 Submenu: Setup | Device

3.5.1.1 Tab: Setup | Device | Identification

In the **"Identification"** tab, the factory-set product properties can be displayed, and device tags can be edited.

Online Parametrization						
Identification Device/Modules		Date/Time Units Display Format				
Assistant QuickStart Assistant	Device Header Digital Value	3.66 g/cm8			GERTHOLD	
Application Assistant	Analog Value	20.0 mA		locked	DERTIDED	
Signal AddOns Assistant T	· · ·					
Device	Device Tag HART Message		Product Product Name	LB 430		
Application Communication	HART Descriptor		Application	Density		
Security	Long Tag	A170103	Device ID	67		eries
Authentication HART Specific Access	Short Tag	0A170103	Expanded Device Type	a170		430
	HART Date	1/1/2006	Serial No.	15	Agreement With Ball MORENER Date * State was	150
			Material No.	20		
			Service Tag		Sec. 1	
			Softw. Version	00.02.00		
			Softw. Build No.	12542		
					DENS	ITY
	L					

Fig. 33 Tab: Setup / Device / Identification.

3.5.1.2 Tab: Setup | Device | Reset

		Â	u 🕸		▲ ?
LB_430_De Berthold	nsity				
Online Parametrization Identification					
 Identification Device/Modules 		Time Units Display Format			
 Assistant 	Device Header		_	6	
QuickStart Assistant	Digital Value	3.64 g/cm ³		BERTHOLD	
Application Assistant	Analog Value	20.0 mA		C	
Signal AddOns Assistant 📃					
Device	Actions				
Application	😵 System Reset				
Communication 📑	😵 Repair Reset				
✓ Security	So Factory Reset				
Authentication	ar roctory near				
HART Specific Access 📃					
	<				

Fig. 34 Tab: Setup / Device / Reset.

In this tab, the detector can be restarted or reset to the factory settings. Three different types of resets are available:

Reset	Description
[%] System Reset	Systemneustart des Komplettgerätes. Alle Einstel- lungen und Kalibrierdaten bleiben erhalten.
🍄 Repair Reset	Systemneustart der Prozessoreinheit. Korrumpierte Dateien in Flash-Speicher werden repariert. Nach Ap- plikationswechsel auszuführen.
[%] Factory Reset	Zurücksetzen des Gerätes auf Werkseinstellungen. Sämtliche Kalibrierdaten und Einstellungen gehen verloren.

NOTICE

If a communication interruption occurs during a detector software update, reinstallation may no longer be possible. By using the **Repair Reset**, button, the connection to the detector can be restored, and the update can be restarted.

3.5.1.3 Tab: Setup | Device | Date/Time

		Ĝ	Ŀ	¥		
LB_430_Den Berthold	sity					
Online Parametrization						
Identification Device/Modules	Identification Reset D	ate/Time Units Display Format				
 Assistant 	Device Header			_	C	
QuickStart Assistant Application Assistant	Digital Value	3.68 g/cm ³			BERTHOLD	
Application Assistant	Analog Value	20.0 mA				
Setup	Date Time					
Application	System Date/Time	06/07/24 14:03				
Communication	Year	2024 yr				
Security	Month	June ~				
Authentication HART Specific Access	Day	7 d				
MART Specific Access	Hour	13 h				
	Minute	41 min				
	Second	51 s				
					Apply Reven	Close

Fig. 35 Tab: Setup / Device / Date/Time.

In the **"Date/Time"** tab, the date and time can be entered or changed. The correct date is required for the automatic decay compensation of the isotope. Since the activity of the radiation source decreases over time, the calibration count rates are automatically compensated based on the date.

3.5.1.4 Tab: Setup | Device | Units

e/Time Units Display Format 3.67 g/cm ¹ 200 mA g/cm ¹ w/ts	✓ C ✓ SI	cale Setting ountry Code	Unlocked		GERTHOLD	
3.67 g/cm ³ 20.0 mA g/cm ³	✓ C ✓ SI	ocale Setting ountry Code	US		GERTHOLD	
20.0 mA g/cm ¹ g/cm ²	✓ C ✓ SI	ocale Setting ountry Code	US	~	GERTHOLD	
20.0 mA g/cm ¹ g/cm ²	✓ C ✓ SI	ocale Setting ountry Code	US	v	DERTHOLD	
g/cm ¹ g/cm ¹	✓ C ✓ SI	ocale Setting ountry Code	US	v		
g/cm³	✓ C ✓ SI	ountry Code		v		
g/cm³	~ SI			~		
		Unit Control				
wt%			None	~		
	~					
cps	~					
۰c	~					
v	~					
	~					
g/cm²	*					
	V mA m g/cm ¹	mA v m v	mA ~ m ~	mA v m v	mA v m v	mA v m v

Fig. 36 Tab: Setup | Device | Units.

In the **"Units"** tab, the available units for the measurement values are listed by clicking the respective selection arrow. The selected unit will be used in the display and in the calibration settings.

3.5.1.5 Tab: Setup | Device | Display Format

		(<u> </u>	Ŀ	\$		▲ ②
10 420 Dec							
LB_430_Den:	sity						
Online Parametrization							
4 Identification							
Device/Modules	Device Header	/Time Units Display Format					
Assistant QuickStart Assistant	Digital Value	3.65 g/cm ⁸				GERTHOLD	
Application Assistant		20.0 mA				Service	
Signal AddOns Assistant 📃	Analog Value	20.0 mA					
Setup	Format Setting			Actions			
Application	Process Value Format	хах	~	So Reset to I	Default		
Communication	Sensor Format	x	~				
✓ Security	Temp. Format	xx	~				
Authentication HART Specific Access	Current Format	xx	~				
	Voltage Format	xax	~				
	-		~				
	Length Format	x300X					
	Product Density Format	x300X	~				
	Coeff. Format	x.000£00X	~				
							,
						Apply Revert	Close

Fig. 37 Tab: Setup / Device / Display Format.

In the **"Display Format"** tab, the number of decimal places for the respective values can be defined. By pressing the **Reset to Default** button, the factory-set decimal places will be restored.

3.5.2 Submenu: Setup | Application

3.5.2.1 Tab: Setup | Application | Sensors

alibration Read-In Measurement Sign ader 3.66	al Condition Outouts Alarms Measurem			
ader	al Condition Outputs Alarms Messurem			
ader	al Condition Outputs Alarms Measurem			
ader	al Condition Outputs Alarms Measurem			
ader		and the second second		
		ient simulation		
	g/cm³		Gar	RTHOLD
			<u>e</u>	
/alue 20.0	mA 🖸	Unlocked		
tiplier Monitor	Photomultiplier Setti	ngs	Det. Temperature	
33 c	ps Det. Code		0 Actual Value	24.4 °C
39 c	ps Det. Code Descriptor	CrystalSENS Nal (Standard)	Max. Value	25.5 °C
ann. Rate 38 c	ps Bias Voltage State De	ef Auto ~	Min. Value	11.4 °C
n. Rate 1 c	ps Bias Voltage Default	39.80 V		
hann Rate 1				
	20			
nt 0.0 n	۱A			
	33 q 39 q ann. Rate 38 q q ann. Rate 1 q q ann. Rate 0 ge State Auto ge 39.70	33 cps Det. Code 39 cps Det. Code 38 cps Bias Voitage Detauts ann. Rate 1 cps Bias Voitage Detauts ann. Rate 0 cps Bias Voitage Detauts ann. Rate 0 cps Bias Voitage Manual ann. Rate 0 cps Bias Voitage Manual gete 39.78 V V	33 cps Det. Code 0 38 cps Det. Code Crysta/SENS Nal (Sandord) ann Rate 38 cps Bas Votage State Det Auto ann Rate 1 cps Bas Votage Default 39.80 V anner, Rate 2 0 cps Bas Votage Manual 39.00 V ge faster Auto	33 grps Der. Code 0 Attual Value 39 grps Der. Code Derstigtor CrystalENS Nat (Standard) Max. Value ann Rate 38 grps Bills Voltage State Derl Auto Max. Value Min. Value ann Rate 1 grps Bills Voltage State Derl 39.00 V Min. Value Min. Value ann Rate 2 0 grps Bills Voltage Manual 39.00 V Min. Value Min. Value ge 39.72 V

Fig. 38 Tab: Setup | Application | Sensors.

In the **"Sensors"** tab, the raw count rates of the photomultiplier and the detector temperature are displayed. In the "Photomultiplier Settings" field, the detector code and the voltage can be modified.

By setting the detector code, the internal device parameters are adjusted to the used scintillator size. The correct detector code is set at the factory, and changes are generally not required.

NOTICE

The default voltage is preconfigured by Berthold, and typically, no changes are necessary. The use of the "Manual" mode as a normal operating mode for high-voltage control is not recommended by Berthold. The "Manual" selection should only be used for service purposes.

Tab: Setup | Application | Calibration 3.5.2.2

LB_430_De Berthold	nsity					
Online Parametrization						
Identification		d-In Measurement Signal Condition				
Device/Modules	Device Header	id-in Measurement Signal Condition 1	Outputs Alarms Measurem	nent simulation		
Assistant QuickStart Assistant	Digital Value	3.64 g/cm ³			GERTHOLD	
Application Assistant			-		BERMOED	
Signal AddOns Assistant	Analog Value	20.0 mA	0	Unlocked		
Setup	Cal. Settings		Cal. Coefficients		Cal. Points	
Device	Cal. Basics		Coeff. 0	5.555e+003	Cal. Table	
Application Communication	Application	Density	Coeff. 1	-5.153e+002	Process Value Rate	^
Security Authentication HART Specific Access	Method	Multipoint ~			[g/cm*] [cps]	
	Background	0 cps	RMSE	0.78	1 1.20 4687	
			Correlation factor	1.00	2 1.40 3171	
	Curve Type	Linear ~	Cal. Date/Time		3 1.60 2150 4 1.80 1463	
	Nuclide	Cs-137 ~	Last Cal. Time	05/07/24 14:49	5 0.00 0	
	Cal. Range Limits		Last Camp Time		6 0.00 0	
	Upper Range Limit	5.55 g/cm ²	Last Comp. Time	06/07/24 09:01	7 0.00 0	
					8 0.00 0	
	Lower Range Limit	0.01 g/cm ²			9 0.00 0	~
	Cal. Range Values					
	Upper Range Val.	2.00 g/cm ²			Actions So Validate	
	Lower Range Val.	1.00 g/cm ²			go validate	
					-	
					Se Recall	

Fig. 39 Tab: Setup | Application | Calibration.

In the "Calibration" tab, all settings for calibrating the measurement system can be configured. It is important to note that the configured calibration parameters will only affect the measurement after executing the **Calibrate** function.

NOTICE

Damage to the device or system!

Errors in calibration or parameter settings can lead to incorrect measurement results. This may potentially result in production downtime or damage to the system.

We recommend having the calibration and commissioning performed by Berthold Service.

Calibration Settings

In the "Cal. Settings" field, basic calibration settings are defined in the selection fields "Method" and "Curve Type." More information can be found in Chapter 3.6 Calibration methods and curve types.

In the "Background" field, the background count rate is displayed, which can be determined in the "Read-In" submenu.

In the "Nuclide" selection field, the isotope used can be selected. The isotope of the radiation source must be chosen. The source isotope is specified on the type plate of the shield.

In the "Cal. Range Value" field, the lower and upper limits of the process range for the active measurement parameter set can be configured. These values define the signal range of the analog current output (4 ... 20 mA or 0 ... 20 mA).

NOTICE

The Cal. Range Values must be within the Cal. Range Limits, which are displayed in the box above and are dependent on the calibration points in the calibration table.

Calibration Points

In the "Cal. Points" field, you can add, edit, and delete calibration points.

NOTICE

The number of calibration points is determined by the selection in the "Me-thod" field.

Please refer to the details in Chapter 3.6 Calibration methods and curve types. for further guidance.

The inputs and adjustments to the calibration points can be checked using the **Solution** button. When the **Solution** button is clicked, the validation process is automatically performed, followed by calibration.

The **Recall** button allows you to overwrite the measurement parameter set into the calibration parameter set.

3.5.2.3 Tab: Setup | Application | Read-In

v s S5

Fig. 40 Tab: Setup | Application | Read-In.

In the tab **"Read-In"**, you can configure the read-in time for background determination and calibration points. The read-in process can then be started using the **Sead-In** buttons. Two options are available for determining the read-in time and accuracy, providing flexibility to suit your specific requirements.

Read-In Time	The maximum read-in time can be configured. By default, the system sets a read-in time of 120 seconds for back- ground count rates and 60 seconds for calibration points, which typically have significantly higher count rates. The minimum Read-In Time that can be configured is 60 seconds .
Count-Rate De- viation	This setting allows you to specify a desired average devia- tion of the count rate in percentage. If the desired devia- tion is achieved during the read-in process, the routine will be completed before the configured time elapses. The higher the set deviation, the less time is required for the read-in process. By default, the deviation is set to 0.1% .

3.5.2.4 Tab: Setup | Application | Measurement

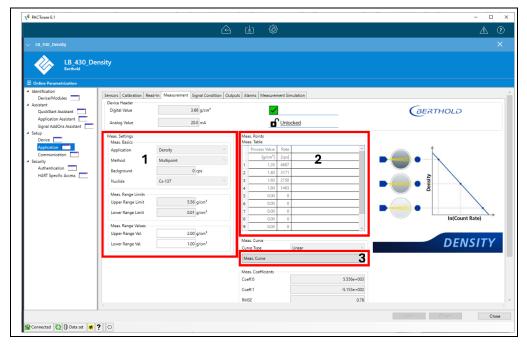


Fig. 41 Tab: Setup | Application | Measurement.

The tab **"Measurement"** provides an overview of the current measurement settings. The following elements can be viewed and verified:

- Meas. Settings: Displays the relevant settings for the measurement (Fig. 41, Pos. 1).
- Meas. Points: Shows the current calibration table (Fig. 41, Pos. 2), providing an overview of the calibration values currently in use.
- Meas. Curve: Enables visualization and verification of the measurement curve (via the ⁹ Meas. Curve button, Fig. 41, Pos. 3).

3.5.2.5 Tab: Setup | Application | Signal Conditions

	- 14-1			
LB_430_Der Berthold	nsity			
Online Parametrization				
Identification Device/Modules	Sensors Calibration Read-In	Measurement Signal Condition Outputs	Narms Measurement Simulation	
✓ Assistant	Device Header			6
QuickStart Assistant Application Assistant	Digital Value	3.66 g/cm ³		BERTHOLD
Signal AddOns Assistant	Analog Value	20.0 mA		
✓ Setup Device	Cal. Limits			
Application	Lower Range Limit	0.01 g/cm ⁴		
Communication	Upper Range Limit	5.55 g/cm*		
Authentication HART Specific Access	Cal. Range Values			
	Upper Range Val.	2.00 g/cm*		
	Lower Range Val.	1.00 g/cm ²		
	Cal. Damping			
	Time Constant	30 s		
	Cal. Scaling			
	Scaling Factor	1		
	Scaling Offset	0.00 g/cm*		

Fig. 42 Tab: Setup | Application | Signal Condition.

In the **"Signal Conditions"** tab, you can see the range limits and configure the range values, damping (time constant), and scaling.

Upper/Lower Range Limit	Displays the lower limit of the measurement range, which is calculated by the system based on the calibra- tion. The values of the defined measurement range (Up- per/Lower Range Value) must lie within these limits.
Upper/Lower Range Value	Upper and lower process value limit: Under this setting, it can be specified which process value the maximum current of 20 mA and which pro- cess value the minimum current of 4 mA should corre- spond to.
Time Constant	The time constant determines the time window over which a moving mean value filter is applied to the measured count rate and is thus responsible for smoothing the output signal. With small time con- stants (minimum 1 second), faster process changes (ap- proximately 3 seconds) can be better responded to, but the signal will contain more statistical noise. The default setting for the time constant is 20 seconds.
Scaling Factor	A factor by which the measured value is multiplied. This allows for correcting deviations in the calibration. It enables adjustment to changed operating condi- tions, such as deposits or wear on the pipe wall, with- out the need for recalibration. The default value is 1. The corrected display, considering the offset and fac- tor, is calculated as follows: Display = Measured Value × Factor + Offset
Scaling Offset	If the measurement was calibrated in a different range, the calibration curve can be shifted parallel by specifying an offset, without the need to re-enter the calibration values.

Changes to the Scaling Offset and Scaling Factor directly affect the measured value.

3.5.2.6 Tab: Setup | Application | Output

LB_430_Density						
LB_430_De Berthold ≡ Online Parametrization	nsity					
Identification			· · · ·			
Device/Modules	Sensors Calibration Rea	d-In Measurement Signal Condition Outp	uts Alarms N	leasurement Simulation		
Assistant QuickStart Assistant	Digital Value	3.66 g/cm ³			(BERTHOLD	
Application Assistant		20.0 mA		- O	DERMIGED	
Signal AddOns Assistant 📃	Analog Value	20.0 mA				
Setup Device	Analog Output 1					
Application	Analog Value	20.0 mA				
Communication	Feedback Value	20.0 mA				
 Security Authentication 	Monitoring	Not active v				
HART Specific Access	Operating State	Run v				
	Alarm Mode	Low v				
	Alarm Current	3.5 mA				
	Saturation UL	20.0 mA				
	Saturation LL	4.0 mA				
	Actions					
	So Current Loop Adjust	/ Monitoring				

Fig 43 Tab: Setup / Application / Output.

Here, you can activate or deactivate the monitoring of the 4 ... 20 mA current signal. The monitoring checks whether the set current is flowing in the current loop and reports an error if there is a deviation. Additionally, the alarm mode can be configured, meaning you can determine which error current will be output in the event of a failure.

Alarm Mode High	In the event of a failure, the current output will be set to >21 mA.
Alarm Mode Low	In the event of a failure, the current output will be set to <3.6 mA .

If there are deviations between the setpoint and the actual value of the current signal, the current output can be recalibrated. The **Current Loop Adjust / Monitoring** button allows for the verification or calibration of the current output.

3.5.2.7 Tab: Setup | Application | Alarms

LB_430_Density							
LB_430_De Berthold	nsity						
Online Parametrization							
Device/Modules 🔤	Sensors Calibration Read	-In Measurement Signal Condition	n Outpu	ts Alarms Measuremen	t Simulation		
Assistant OuickStart Assistant	Digital Value	3.66 g/cm ⁸				BERTHOLD	
Application Assistant						CERTIFICED	
Signal AddOns Assistant 📃	Analog Value	20.0 mA			nlocked		
Setup Device	Alarm Switch			Alarm 1			
Application	Alarm State	Disable	~	Alarm State	Not active ~		
Communication	Alarm Mode	Discrete	~	Alarm Function	Lower Alarm ~		
Security Authentication	Alarm Function	Overflow Alarm	~	Alarm Source	PV v		
HART Specific Access	Digital Output Signal	LOW to HIGH		PV is	Density 2		
	Threshold Overflow A	0.00 g/cm ³		Actual Value	3.67 g/cm3		
	Hysteresis Overflow A	0.00 g/cm ³		Threshold Lower Alarr	0.00 g/cm ³		
	· · · · · · · · · · · · · · · · · · ·			Hysteresis Lower Alarm	0.00 g/cm ³		
	L L			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	000 9.000		
	1						

Fig 44 Tab: Setup | Application | Alarms.

In the "Alarms" tab, both the Switch Alarm ("Alarm Switch" in Fig. 40, Pos. 1) and the Standard Alarm ("Alarm 1" in Fig. 40, Pos. 2) can be configured. Different settings can be made for both alarm systems.

Alarm State	Indicates whether the alarm is active ("Active") or in- active ("Not Active").					
Alarm Mode	Alarm Switch:					
	Here, you can choose between "Continuous" and "Discrete" modes.					
	 In "Continuous" mode, the measurement signal is represented over or under the switch value via the current output. 					
	 In "Discrete" mode, only the two switch current values are differentiated. 					
	Alarm 1:					
	Differentiates between "Upper Alarm" , "Lower Alarm" , and "Upper AND Lower Alarm" . This allows setting upper or lower alarm limits for the selected process variable. The threshold and hysteresis settings are automatically adjusted to match the cho- sen mode.					
Alarm Function	Selection between "Overflow Alarm" and "Under- flow Alarm". This option is only available for the Switch Alarm.					
	• Overflow Alarm: The alarm is activated when the value exceeds the set threshold.					
	• Underflow Alarm: The alarm is activated when value falls below the set threshold.					
	The choice of alarm function directly impacts the "Dig- ital Output Signal".					
	Example:					

	• If "Overflow Alarm" is selected with a threshold at 80% and a hysteresis of 5%, the alarm will deactivate at 75%.
	 If "Underflow Alarm" is selected with a threshold of 20% and the same hysteresis, the alarm will de- activate at 25%.
Digital Output Sig- nal	Only for the Switch Alarm . Depending on the chosen alarm function, either a "LOW to HIGH" signal (for Overflow Alarm) or a "HIGH to LOW" signal (for Un- derflow Alarm) will be output.
Analog Output Sig- nal	Here, the analog output signal can be adjusted. The following configurations are available:
	• 8 mA to 16 mA
	• 16 mA to 8 mA
	• 4mA to 20 mA
	• 20 mA to 4 mA
Alarm Source /	Only available for Standard Alarms. The Switch Alarm
PV/SV/TV/QV is/	is limited to the Primary Value (PV) . Here, the source
Actual Value	HART variable for the alarm (PV/SV/TV/QV) can be set. The physical variable mapped to the selected HART variable will be displayed in the "PV/SV/TV/QV is" field. The current value of this variable will be visible in the "Actual Value" field.
Threshold	The Threshold defines the limit above which the alarm will be triggered.
Hysteresis	The Hysteresis defines the value below (or above) which the alarm will no longer be triggered once it has been activated.
	Example:
	 If "Upper Alarm" is selected with a threshold at 80% and a hysteresis of 5%, the alarm will deacti- vate at 75%.
	 If "Lower Alarm" is selected with a threshold of 20% and the same hysteresis, the alarm will deacti- vate at 25%.

3.5.2.8 Tab: Setup | Application | Measurement Simulation

LB_430_De Berthold	nsity						
Online Parametrization							
Identification	Second Calibration Re	ad-In Measurement Signal Condition Ou	tauta Alarma Matruram	ent Simulation			
Device/Modules	Device Header	au-in measurement signal condition or	reports Marinis measurem	en omdadon			
QuickStart Assistant	Digital Value	3.67 g/cm ⁸			(BERTHOLD	
Application Assistant	Analog Value	20.0 mA	_	Unlocked			
Signal AddOns Assistant	Analog value	200 114	0	Onlocked			
Setup Device	Live Rate		Process Value		Analog Output 1		
Application	Simulation Status	Off ~	Simulation Status	Off	 Simulation Status 	Off	
Communication	Live Rate	38 cps	Digital Value	3.67 g/cm ⁸	Analog Value	20.0 mA	
Security Authentication	Simulation Value	0 cps	Simulation Value	0.00 g/cm ⁸	Simulate Value		
	Simulation Status Avg. Rate Simulation Value Det. Temperature Simulation Status Det. Temperature Simulation Value	CH v 39 cps CH v 244 rc 00 cps					
					Appl	/ Reven	Close

Fig 45 Tab: Setup | *Application* | *Measurement Simulation*.

In the tab **"Simulation"**, it is possible to simulate the live count rate, the averaged count rate, the detector temperature, as well as the process value or the analog current output, to test the functionality of the configuration.

To simulate a specific process value, the "Simulation Status" option must first be set to "On." The simulated value can then be entered in the "Simulated Value" field, while the measured values are displayed in the respective fields: "Live Rate," "Avg. Rate," "Det. Temperature," and "Digital Value."

The analog current output can be simulated using the "Analog Output 1" box. To do so, a value to be simulated must be entered, and the **Simulate Value** button must be pressed.

The simulation is started by clicking the **Apply** button.

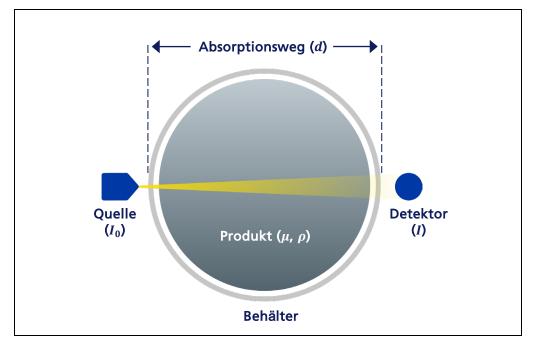
NOTICE

Don't forget to switch from ON to OFF after testing or to restart the device; otherwise, the test values will remain frozen.

3.5.3 Submenu: Setup | Communication

3.5.3.1 Tab: Setup | Communication | Communication

V 19, 30, Density 2000000000000000000000000000000000000	PACTware 6.1		~	da G		- 0
Construction Construction Device float Austrant			É	E ŵ		<u> </u>
Bendadi Contane Accurate Visition Device Modules Optice Modules Separation Optice Modules Separation Device Modules Separation Optice Modules Separation Device Modules Analog Malore Device Modules Application Attempt Device Modules Application Attempt Device Dovice Type Application Attempt Device Dovice Type Application Attempt Macheture (D Macheture (D Matheture Application Attempt Matheture Application Attempt Matheture Application Attempt Matheture Application Atteuro Matholdenes </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
	Color Persentitation Construction Construct	Communication Device Header Digital Value Analog Value Expanded Device Type Device ID Manufacturer ID Manufacturer ID HART Address	200 mA a170 1 67 A1 5	Revisions Transmitter Rev. Universal Rev. Hardware Rev.	1 PV is 7 Secondary Variab SV is Tertiary Variable I TV is	(P/) Density v (P/) Density v (P/) Aug Rate 3 (T/) Une Rate v
Kontensional (Kontensional (Ko						


Fig 46 Tab: Setup / Communication / Communication.

In the **"Communication"** tab, you can view the factory-set product properties (Fig 46, Pos. 1), the revision status of the HART protocol (Fig 46, Pos. 2), and the assigned HART variables. By pressing the **Set HART Address** button, a new HART address can be assigned to the device for communication with the control system.

3.6 Calibration methods and curve types

The basic principle of radiometric measurement systems lies in the interaction of gamma radiation with a product to be measured and the detection of the radiation after this interaction. As shown in Fig 47, the setup of a radiometric measurement requires a radioactive source, a container with the product to be measured, and a detector for gamma radiation. For simplicity, the explanation here employs a basic density measurement using a point source-point detector arrangement on opposite sides of the container. However, it should be noted that more complex arrangements are possible for radiometric measurements, especially for level detection. These are explained in more detail in the corresponding Chapter 3.6.1.2 Typic cal measurement arrangements.

If the gamma radiation has an initial intensity I_0 at the source, it is attenuated to an intensity I after passing through the container and interacting with the measurement product. This process is physically described by the law of absorption:

 $I = I_0 \cdot e^{-\mu\rho d}$

Fig 47 Setup of a radiometric measurement.

Here, ρ represents the density of the material being penetrated, and d denotes the absorption path, i.e., the distance the radiation travels from the source to the detector. The parameter μ refers to the mass attenuation coefficient, which is both a property of the material being penetrated and dependent on the radiation's energy.

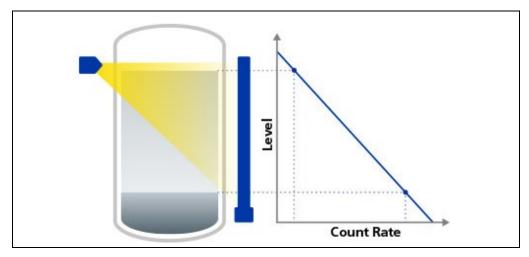
It is worth noting that for many common radiation energies (e.g., from Cs-137 or Co-60), the dependence of μ on the material being penetrated is negligibly small.

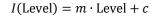
The intensity *I* is typically measured as a count rate at the detector, which reflects the number of gamma quanta detected by the scintillation counter in the form of light flashes. For more information on scintillation and the technology underlying our radiation detectors, please visit our Knowledge Base at <u>www.berthold.com</u>.

3.6.1 Application: Level

The radiometric determination of the level in containers is based on the coverage of the radiation field emitted by the radioactive source by the material inside the container. The higher the level of the material, the more the radiation field generated by the source is covered, resulting in a lower measurement signal.

3.6.1.1 Calibration of a level measurement


When calibrating a level measurement system, a calibration curve must be determined that links the level within the container to a specific count rate *I* measured by the detector. The system then calculates the continuous level along this curve, even between the empirically determined calibration points.


Since the shape of the calibration curve for arbitrary arrangements of the source and detector depends on numerous factors – such as the detector's sensitivity, the angle of incidence of the radiation, the geometry of the container, and the energy of the radiation source – radiometric systems must support multiple calibration methods. This flexibility ensures that these systems can effectively accommodate a wide range of measurement configurations.

2-Point calibration – linear curve

For calibration, exactly two count rates *I* are required. These should represent the minimum (hereafter referred to as 0) and maximum (hereafter referred to as 1) levels within the sensitive measurement range to achieve the highest measurement accuracy. Between these two points, the measured value is linearly interpolated.

This calibration method assumes that the system's calibration curve is strictly linear. The linearity is described by the following equation:

Fig 48 2-Point calibration – Linear Curve.

The slope of the line m and the intercept with the y-axis c are determined based on the two calibration points I(0) and I(1) as follows:

$$c = I(0)$$
$$m = I(1) - I(0)$$

IMPORTANT

A linear calibration curve for level measurements is not feasible for all measurement configurations but is essential for this type of calibration. For configurations using rod sources from Berthold, this calibration method can be applied without concern. However, configurations with point sources may exhibit significant deviations between the two calibration points, making the linear assumption less accurate in those cases.

2-Point calibration – exponential curve

Similar to the linear 2-Point calibration, *exactly two* count rates *I* are required here as well. These should also represent the minimum (hereafter referred to as 0) and maximum (hereafter referred to as 1) levels within the sensitive measurement range to achieve the highest measurement accuracy.

The two count rates are logarithmized, and linear interpolation is performed between the logarithmized values. The relationship is expressed as:

Level =
$$m \cdot \ln I$$
(Level) + c

By applying the reverse transformation, the following calibration curve equation is obtained:

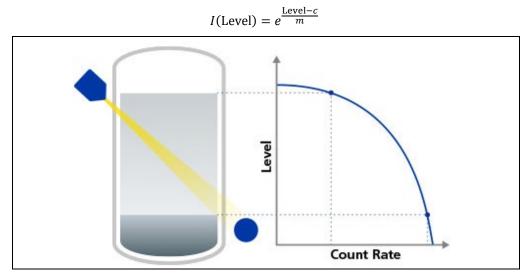
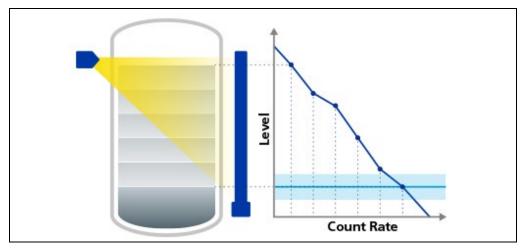


Fig 49 2-Point calibration – Exponential curve.

IMPORTANT


Exponential 2-Point calibration is intended only for specialized applications where the calibration curve resembles an exponential function and multipoint calibration is not possible. An example of this is absorption level measurements with a point-source point-detector arrangement (Fig. 49). This arrangement is explained in more detail in the following Chapter 3.6.1.2 - Typical measurement arrangements.

Multipoint calibration

In some configurations, it is not possible to achieve a linear calibration curve due to various factors such as the radiation field geometry, container geometry, or the specific arrangement used. In such cases, multipoint calibration can be utilized. A minimum of two and a maximum of eleven calibration points are recorded. Linear interpolation is performed in the segments *j* between the respective calibration points I_{j-1} und I_{j+1} .

$$I(\text{Level}_{\text{egment}\,i}) = m_{\text{Segment}\,i} \cdot \text{Level}_{\text{Segment}\,i} + c_{\text{Segment}\,i}$$

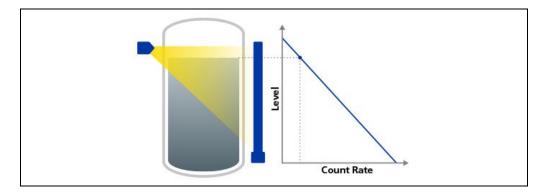
A nonlinear calibration curve can thus be approximated by a maximum of 10 linear segments.

Fig 50 Multipoint calibration.

The slopes $m_{\text{Segment}j}$ and y-axis intercepts $c_{\text{Segment}j}$ of the respective segments are determined by the system based on the adjacent calibration points I_{j-1} und I_{j+1} , just as in the linear two-point calibration.

$$c_{\text{Segment j}} = I_{j-1}$$

 $m_{\text{Segment j}} = I_{j+1} - I_{j-1}$


IMPORTANT

Multipoint calibration provides the highest accuracy in almost all level measurements with the fewest required prerequisites. It is therefore recommended to use this calibration method whenever possible. All other calibration methods are associated with assumptions. Not meeting these assumptions can lead to significant deviations in the measured value.

1-Point calibration – linear curve

The linear one-point calibration can be used when it is not possible to determine more than one calibration point. This calibration method requires a count rate I_n at any level n, the product and gas density (ρ_L , ρ_G), the background count rate I_{BG} , as well as the absorption path d and the mass attenuation coefficient of the product μ . The system then calculates the count rates at 0% and 100% fill levels approximately and performs a linear interpolation like a two-point calibration.

$$I_{0\%} = \frac{I_{\rm n} - I_{\rm BG}}{1 - \frac{\rm n}{100\%} \cdot (1 - {\rm e}^{-\mu \cdot (\rho_{\rm L} - \rho_{\rm G}) \cdot d})} + I_{\rm BG}$$
$$I_{100\%} = (I_{0\%} - I_{\rm BG}) \cdot {\rm e}^{-\mu \cdot (\rho_{\rm L} - \rho_{\rm G}) \cdot d} + I_{\rm BG}$$

Fig 51 1-Point calibration – linear curve.

IMPORTANT

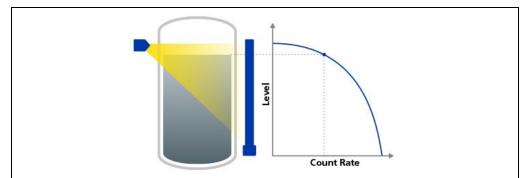
It is important to note that the following assumptions must be made when using the linear one-point calibration method:

1. Linearity of the Calibration Curve

This is only accurately achieved when using a rod source with a precisely planned activity distribution. When point sources are used, the calibration curve is generally nonlinear. The use of multiple point sources can partially linearize the curve.

2. Knowledge of the Correct Product and Gas Density

In practice, determining the product and gas density is challenging, and estimated or calculated values are often used, which can significantly deviate from actual values. If incorrect values for product and gas density are used in the calculation, the computed count rates will also be inaccurate.


3. Internal diameter of the container matches the absorption path In continuous radiometric level measurements (excluding absorptionbased level measurements), the average absorption path is always larger than the container's internal diameter due to geometry. The difference increases with the beam angle of the radiation field.

If these assumptions are not fully or only partially met, the calculated calibration curve will deviate correspondingly from the actual calibration curve.

1-Point calibration – exponential curve

The exponential one-point calibration can be used when it is not possible to determine more than one calibration point, and it is known that the calibration curve follows an exponential trend. This calibration method requires a count rate I_n at any level n, the product and gas density (ρ_L , ρ_G), the background count rate I_{BG} , the absorption path d at 100% level, and the mass attenuation coefficient of the product μ benötigt.

The system approximates the count rate $I_{100\%}$ at 100% level and performs a linear interpolation using the logarithmic values $\ln I_n$ and $\ln I_{100\%}$, like an exponential two-point calibration.

$$I_{100\%} = (I_{\rm n} - I_{\rm BG}) \cdot e^{-\mu \cdot (\rho_{\rm L} - \rho_{\rm G}) \cdot d_{100\%} \cdot \left(1 - \frac{n}{100\%}\right)} + I_{\rm BG}$$

Fig 52 1-Point calibration – exponential curve.

WICHTIG

It is important to note that the following assumptions must be made when using the linear one-point calibration method:

1. Knowledge of the correct product and gas density

In practice, determining the product and gas density is challenging, and estimated or calculated values are often used, which can significantly deviate from actual values. If incorrect values for product and gas density are used in the calculation, the computed count rates will also be inaccurate.

2. Internal diameter of the container matches the absorption path In continuous radiometric level measurements (excluding absorptionbased level measurements), the average absorption path is always larger than the container's internal diameter due to geometry. The difference increases with the beam angle of the radiation field.

If these assumptions are not fully or only partially met, the calculated calibration curve will deviate correspondingly from the actual calibration curve.

An exponential one-point calibration, like the exponential two-point calibration, is only suitable for specific measurement arrangements, such as absorption-based level measurement, and should not be used for any other setup.

3.6.1.2 Typical measurment arrangements

Point source – Rod detector

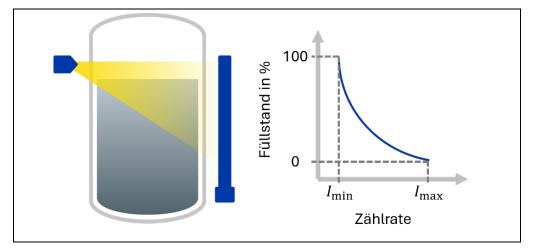


Fig 53 Measurement arrangement: Point source – Rod detector

The point source-rod detector arrangement is the simplest and most cost-effective way to realize a level measurement and is considered a standard setup. The point source is typically mounted so that it forms a line with the upper limit of the sensitive detector area. The beam angle of the source is chosen to illuminate the entire sensitive area of the detector. Due to the geometry of the setup, the calibration curve tends to have a parabolic shape, as both the amount of material being irradiated and the angle of incidence of the radiation vary along the sensitive detector area. While a two-point calibration is possible, a multipoint calibration is clearly recommended to achieve the required measurement accuracy across the entire range.

Rod source – Point detector

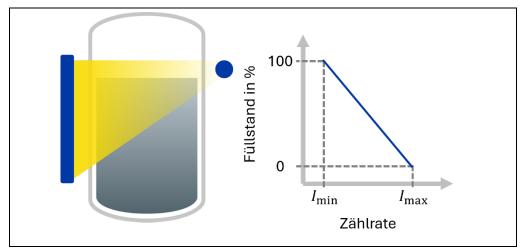
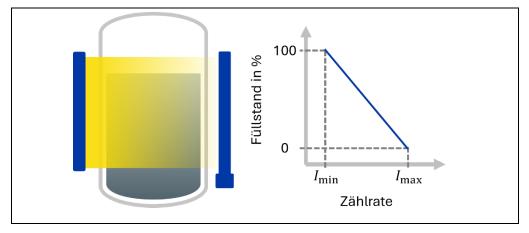



Fig 54 Measurement arrangement: Rod source – Point detector

The rod source-point detector arrangement is the simplest setup that allows for control of the radiation field in such a way that a true linear calibration curve results. In this arrangement, the density of the winding of the radioactive cobalt wire in the rod source is controlled during production to compensate for the nonlinear radiation field geometry.

A clear advantage of this setup is that it provides a technically elegant solution for level measurement. On one hand, the linearity of the calibration curve is ensured, which allows the system to be easily commissioned with a simple two-point calibration and provides the best accuracy between the two calibration points. On the other hand, the use of rod sources typically involves the isotope Co-60, which emits approximately twice the gamma energy compared to the isotope Cs-137, which is preferably used in point sources. This results in reduced influence from variables such as fluctuating gas pressure, process deposits, or weld inspection on the measurement. Another advantage of this arrangement is the simplified replacement of detectors should a malfunction occur.

Rod source – Rod detector

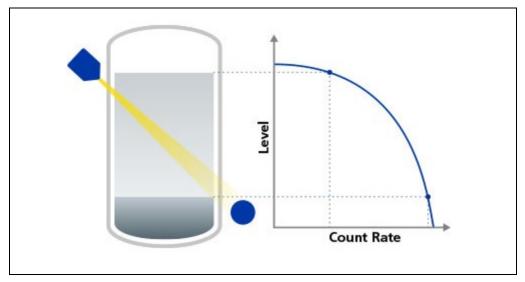


Fig 55 Measurement arrangement: Rod source – Rod detector.

With a rod source-rod detector arrangement, a linear calibration curve can be specifically tailored to the measurement setup through the special winding of the cobalt wire. Compared to the rod source-point detector arrangement, this setup requires less complex winding of the cobalt wire, as the geometry of the radiation field itself ensures the linearity of the calibration curve. Only the container geometry or product properties need to be considered during custom manufacturing.

Advantages of this arrangement include, on one hand, the linearity of the calibration curve, allowing the system to be easily commissioned with a simple two-point calibration without deviations. On the other hand, the use of rod sources involves the isotope Co-60, which emits approximately twice the gamma energy of the isotope Cs-137, which is primarily used in point sources. As a result, variables such as fluctuating gas pressure or process deposits have less influence on the measurement.

However, weld inspections may have a slightly greater impact on the measurement due to the use of rod detectors. Therefore, the use of the X-Ray Interference Protection (XIP)- or the Radiation Interference Discrimination (RID) function (www.berthold.com) is recommended.

Point source – Point detector (Absorption level measurement)

Fig 56 Measurement arrangement: Point source – Point detector for absorption level measurement.

The point source-point detector arrangement is typically used for density or switch measurements and is only applied in a few exceptions for level measurement. This is a more specialized application, generally referred to as "absorption level measurement," which, as the name suggests, involves an absorption measurement rather than a measurement of radiation field coverage. In this arrangement, multipoint calibration is also recommended, as factors such as container geometry, gas pressure, or product properties cannot be ignored. If only two calibration points can be recorded, an exponential two-point calibration is recommended, as it better describes the absorption of gamma radiation by the medium than a linear calibration curve.

3.6.2 Application: Density

The radiometric determination of density works differently from level measurement. Here, the focus is not on how much radiation is shielded by the measured product, but rather on how much gamma radiation is absorbed as it passes through the material. If the absorption path d and the mass attenuation coefficient μ remain constant, the material's density can be calculated using the attenuation law along with the measured and reference radiation intensities.

This means that the measurement signal decreases as the density of the measured product increases. By measuring the density, other process values that depend on it can also be determined. These process values are part of the density application and are referred to as the "measurement mode" in Berthold devices.

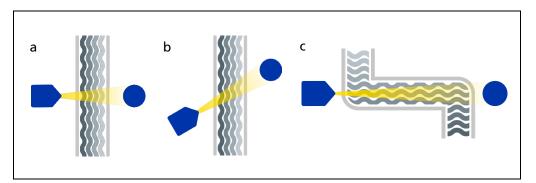


Fig. 57 Different measurement arrangements for density applications. A standard application with a 90° beam angle (a), which can be used for large pipelines, a 45° beam angle arrangement (b) to increase the absorption path, and an arrangement on an S-bend (c), where the pipeline's curve is utilized to create a large absorption path.

The measurement setup plays a less important role in the calibration possibilities for density measurement, unlike in level measurement. In most cases, density is measured on pipelines. A critical factor in this setup is the length of the absorption path. If the absorption path is too short, only a small amount of gamma radiation is absorbed by the product, resulting in a small measurement effect. Therefore, in addition to the standard arrangement (Fig. 57, a), for small pipelines, measurement setups at a 45° angle (Fig. 57, b) as well as setups on an S-bend (Fig. 57, c) are used to increase the absorption path.

For the calibration of density measurements, the chosen measurement mode plays a significant role, as the required calibration curves can vary significantly due to the different definitions of the density of a material, depending on the desired process values.

Measurement Mode: Density 3.6.2.1

This measurement mode is used to determine the density value of a single measurement product. For material mixtures, it is recommended to use the measurement mode for concentration or solid content. Based on the attenuation law,

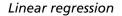
$$I = I_0 \cdot e^{-\mu\rho d}$$

the density of the measured product can be expressed as a linear function of the logarithmic count rates $\ln I$:

$$\rho = \underbrace{-\frac{1}{\mu d}}_{=a_1} \cdot \ln I + \underbrace{\frac{1}{\mu d} \ln I_0}_{a_0}$$

$$\rho = a_1 \ln L + a_2$$

or equivalently:


$$\begin{array}{l}
\rho\\
= a_1 \cdot \ln I + a_0
\end{array}$$

The use of logarithmic count rates allows for a simple linear calibration for density measurement on containers, either through multipoint or 1-point calibration or by directly entering the equation coefficients.

3.6.2.2 Calibration of a density measurement

Multipoint calibration

The user must record both the background count rate I_{BG} nd at least 2 (up to a maximum of 11) calibration points, i.e., pairs of calibration density M and the corresponding calibration count rate I_M . The free parameters of the calibration curve can then be determined through regression of the logarithmic count rates.

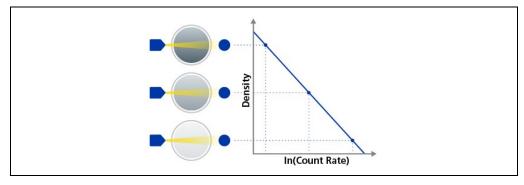


Fig 58 Linear regression (Density).

In linear regression (curve type "Linear"), the calibration points are fitted to a straight line of the form:

$$M = a_0 + a_1(\ln(I_M - I_{BG}))$$

The choice of this calibration curve form requires at least 2 calibration points.

IMPORTANT

In addition to a simple linear regression, options for quadratic or cubic regression curves are also available. The reason for this is that the logarithmic count rates may appear nonlinear due to factors such as complex geometries of the process containers or disturbances like agitators or sieves. In such cases, nonlinear curve types can be used for regression to best compensate for these influences. It is therefore always recommended to check the deviation of the calibration points for linearity after recording, so that the calibration can be adjusted if necessary. Furthermore, it is important to note that at least 3 calibration points are required for a quadratic regression, and at least 4 calibration points for a cubic regression.

Quadratic regression

In quadratic regression (curve type "Quadratic"), the calibration points are fitted to a function of the form:

$$M = a_0 + a_1(\ln(I_M - I_{BG})) + a_2(\ln(I_M - I_{BG}))^2$$

The choice of this calibration curve form requires at least 3 calibration points.

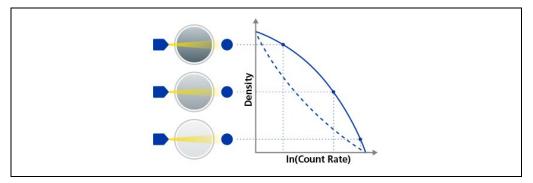


Fig 59 Quadratic regression (Density).

Cubic regression

Fig 60 Cubic regression (Density).

In cubic regression (curve type "Cubic"), the calibration points are fitted to a function of the form:

$$M = a_0 + a_1(\ln(I_M - I_{BG})) + a_2(\ln(I_M - I_{BG}))^2 + a_3(\ln(I_M - I_{BG}))^3$$

The choice of this calibration curve form requires at least 4 calibration points.

1-Point calibration

The user must capture both the background count rate I_{BG} and a calibration point, i.e., a pair of values consisting of a calibration density M and a corresponding calibration count rate I_M . Additionally, the absorption coefficient μ and the measurement path length d in the product must be entered.

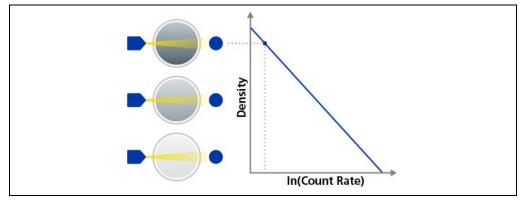


Fig 61 1-Point calibration (Density).

The calibration can only be performed via linear regression of the following form:

$$M = a_0 + a_1(\ln(I_M - I_{BG}))$$

The parameters a_0 and a_1 are calculated analytically as:

$$a_1 = -\frac{1}{\mu d}$$
$$a_0 = M_{cal} - a_1 \cdot \ln(I_{M_{cal}})$$

In other words, this method does not account for more complex geometries of the container or the measurement setup, nor for nonlinear effects. In such cases, it is recommended to use a multi-point calibration approach.

Direct entry

If the coefficients of the calibration equation are known, they can also be entered directly. This is the case, for example, when the measurement has already been calibrated once, and the coefficients from the previous calibration can be reused. When selecting the option for direct input, valid coefficients must be provided. The chosen curve type determines the number of coefficients that need to be entered in the direct input mode.

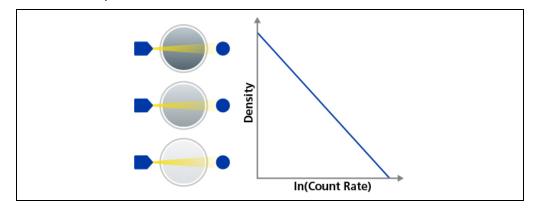


Fig 62 Direct entry – Linear regression (Density).

Direct entry of I_{BG} , a_0 , a_1 – linear regression:

 $M = a_0 + a_1(\ln(I_M - I_{BG}))$

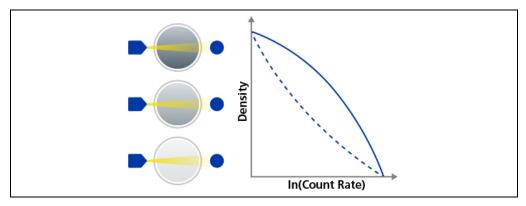


Fig 63 Direct entry – Quadratic regression (Density).

Direct entry of I_{BG} , a_0 , a_1 , a_2 – Quadratic regression: $M = a_0 + a_1(\ln(I_M - I_{BG})) + a_2(\ln(I_M - I_{BG}))^2$

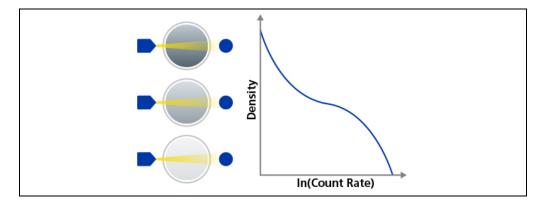


Fig 64 Direct entry – Cubic regression (Density).

Direct entry of I_{BG} , a_0 , a_1 , a_2 , a_3 – Cubic regression:

 $M = a_0 + a_1(\ln(I_M - I_{BG})) + a_2(\ln(I_M - I_{BG}))^2 + a_3(\ln(I_M - I_{BG}))^3$

3.6.2.3 Measurement Mode: Concentration

This measurement mode is used to determine the solid concentration [solid mass/total volume] of a suspension. The average density of a suspension $\bar{\rho}$ can be described using the solid concentration s as follows:

$$\bar{\rho} = \left(1 - \frac{\rho_L}{\rho_S}\right)s + \rho_L$$

where ρ_L represents the density of the liquid phase and ρ_S the density of the solid phase of the suspension. The solid concentration can also be described as the mass of the solid phase m_S relative to the total volume V:

$$s = \frac{m_S}{V}$$

Using this definition of the average density $\bar{\rho}$ in conjunction with the attenuation law:

$$I = I_0 \cdot e^{-\mu \overline{\rho} d}$$

the solid concentration s of the suspension can be expressed, similarly to the calculation of the density of a single material, as a linear function of the logarithmic count rates $\ln I$ with modified coefficients b_0 and b_1 :

$$= \underbrace{-\frac{1}{\mu d(1-\frac{\rho_L}{\rho_S})}}_{=b_1} \cdot \ln I + \underbrace{\frac{1}{\mu d(1-\frac{\rho_L}{\rho_S})} \ln I_0 + \frac{\rho_L}{1-\frac{\rho_L}{\rho_S}}}_{b_0}$$

Thus:

$$s = b_1 \cdot \ln I + b_0$$

The use of logarithmic count rates enables simple linear calibration for measuring the solid concentration in containers. This calibration can be carried out using either multi-point or single-point calibration, as well as by directly entering the equation coefficients.

3.6.2.4 Calibration of a concentration measurement

Multipoint calibration

The user must record both the background count rate I_{BG} and at least 2 (up to a maximum of 11) calibration points, i.e., pairs of calibration density M and the corresponding calibration count rate I_M . The free parameters of the calibration curve can then be determined through regression of the logarithmic count rates.

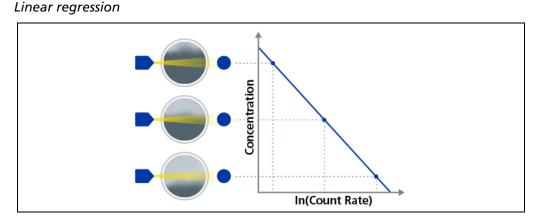


Fig 65 Linear regression (Concentration).

In linear regression (curve type "Linear"), the calibration points are fitted to a straight line of the form:

$$M = b_0 + b_1(\ln(I_M - I_{BG}))$$

The choice of this calibration curve form requires at least 2 calibration points.

IMPORTANT

In addition to simple linear regression, options for quadratic or cubic regression curves are also available. This flexibility addresses cases where logarithmic count rates appear nonlinear due to factors such as complex geometries of process containers or disturbances like agitators or sieves. In such instances, nonlinear curve types can be used for regression to better compensate for these influences.

It is therefore always recommended to check the deviation of the calibration points for linearity after data acquisition to adjust the calibration if necessary. Furthermore, note that quadratic regression requires at least 3 calibration points, while cubic regression requires at least 4 calibration points. Quadratic regression

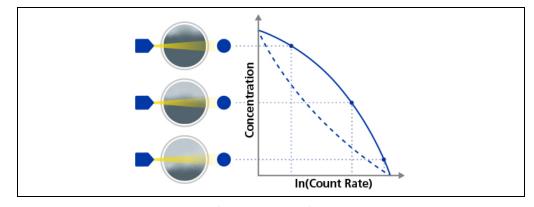
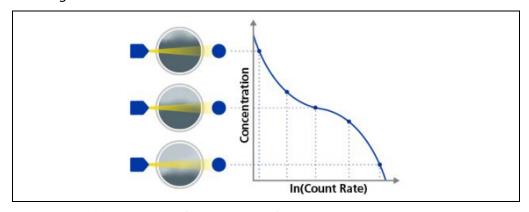



Fig 66 Quadratic regression (Concentration).

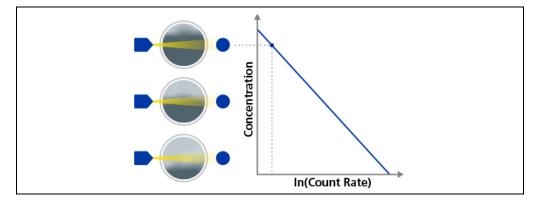
In quadratic regression (curve type "Quadratic"), the calibration points are fitted to a function of the form:

$$M = b_0 + b_1(\ln(I_M - I_{BG})) + b_2(\ln(I_M - I_{BG}))^2$$

The choice of this calibration curve form requires at least 3 calibration points.

Cubic regression

Fig 67 Cubic regression (Concentration).


In cubic regression (curve type "Cubic"), the calibration points are fitted to a function of the form:

 $M = b_0 + b_1(\ln(I_M - I_{BG})) + b_2(\ln(I_M - I_{BG}))^2 + b_3(\ln(I_M - I_{BG}))^3$

The choice of this calibration curve form requires at least 4 calibration points.

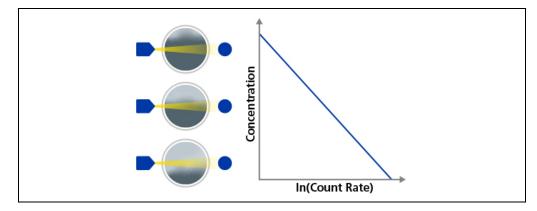
1-Point calibration

The user must capture both the background count rate I_{BG} and a calibration point, i.e., a pair of values consisting of a calibration density M and a corresponding calibration count rate I_M . Additionally, the absorption coefficient μ and the measurement path length d in the product must be entered.

Fig 68 1-Point calibration (Concentration).

The calibration can only be performed via linear regression of the following form:

$$M = b_0 + b_1(\ln(I_M - I_{BG}))$$


The parameters b_0 and b_1 are calculated analytically as:

$$b_1 = -\frac{1}{\mu d(1 - \frac{\rho_L}{\rho_S})}$$
$$b_0 = M_{cal} - b_1 \cdot \ln(I_{M_{cal}})$$

In other words, this method does not account for more complex geometries of the container or the measurement setup, nor for nonlinear effects. In such cases, it is recommended to use a multi-point calibration approach.

Direct entry

If the coefficients of the calibration equation are known, they can also be entered directly. This is the case, for example, when the measurement has already been calibrated once, and the coefficients from the previous calibration can be reused. When selecting the option for direct input, valid coefficients must be provided. The chosen curve type determines the number of coefficients that need to be entered in the direct input mode.

Fig 69 Direct entry – linear regression (Concentration).

Direct entry of I_{BG} , b_0 , b_1 – linear regression:

$$M = b_0 + b_1(\ln(I_M - I_{BG}))$$

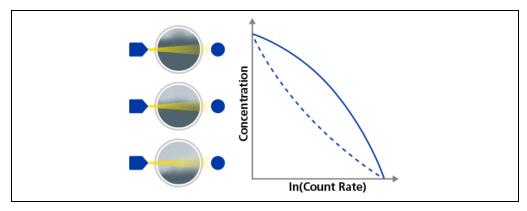
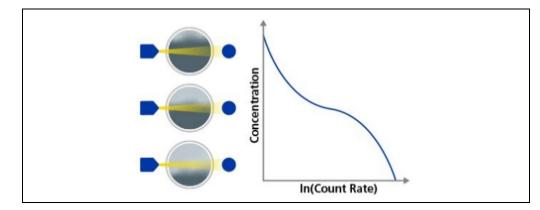



Fig 70 Direct entry – Quadratic regression (Concentration).

Direct entry of I_{BG} , b_0 , b_1 , b_2 – Quadratic regression:

$$M = b_0 + b_1(\ln(I_M - I_{BG})) + b_2(\ln(I_M - I_{BG}))^2$$

Fig 71 Direct entry– Cubic regression (Concentration).

Direct entry of I_{BG} , b_0 , b_1 , b_2 , b_3 – Cubic regression:

 $M = b_0 + b_1(\ln(I_M - I_{BG})) + b_2(\ln(I_M - I_{BG}))^2 + b_3(\ln(I_M - I_{BG}))^3$

3.6.2.5 Measurement Mode: Solid Content

This measurement mode is used to determine the solid content [solid mass/total mass] of a suspension. The average density of a suspension $\bar{\rho}$ can be described using the solid content w_s as follows:

$$\bar{\rho} = \frac{\rho_L}{w_S \cdot \left(\frac{\rho_L}{\rho_S} - 1\right) + 1}$$

with:

$$w_S = \frac{w_S}{w_S + w_L}$$

where ρ_L represents the density of the liquid phase and ρ_S the density of the solid phase of the suspension. Using this definition of the average density $\bar{\rho}$ n conjunction with the attenuation law:

$$I = I_0 \cdot e^{-\mu \overline{\rho} d}$$

the solid content w_s of the suspension can be expressed as a hyperbolic function of the logarithmic count rates $\ln I$ and coefficients c_0 , c_1 and c_2 :

$$= \underbrace{\frac{\rho_{S} \cdot \rho_{L}}{\rho_{S} - \rho_{L}} \cdot \mu \cdot d}_{c_{1}} \cdot \underbrace{\frac{1}{\ln(I) - \ln(I_{0})}}_{c_{2}} + \underbrace{\frac{\rho_{S}}{\rho_{S} - \rho_{L}}}_{c_{0}}$$
$$\hookrightarrow w_{S}$$
$$= c_{1} \cdot \frac{1}{\ln(I) + c_{2}} + c_{0}$$

The solids content can be calibrated either by direct entry of the parameters, a 1-point calibration, a 2-point calibration or a multipoint calibration.

IMPORTANT

The "Solid Content" measurement mode can also be applied to liquid-liquid solutions. However, the underlying model assumes additive volumes. For two liquids, this assumption may not hold due to system-specific mixing effects (e.g., volume contraction). In such cases, the "Density" measurement mode should be selected, and a careful nonlinear calibration should be performed.

=

...

3.6.2.6 Calibration of a solid content measurement

Multipoint calibration

To simplify the regression, the hyperbolic relationship between the solid content M and the logarithmic count rate $\ln(I_M - I_{BG})$ can be adequately approximated by a quadratic function:

$$M = \widetilde{c_0} + \widetilde{c_1}(\ln(I_M - I_{BG})) + \widetilde{c_2}(\ln(I_M - I_{BG}))^2$$

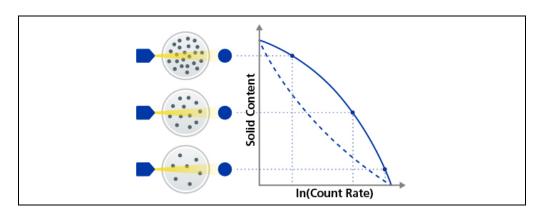


Fig 72 Multipoint calibration (Solid Content).

Accordingly, the user must record at least 3 calibration points $(I_M|M)$ as well as the background count rate I_{BG} . A polynomial regression is performed to determine the coefficients $\tilde{c_0}$, $\tilde{c_1}$, and $\tilde{c_2}$.

It should be noted that this formula is purely empirical. Unlike for other calibrations, the coefficients do not have any physical significance.

1-Point calibration

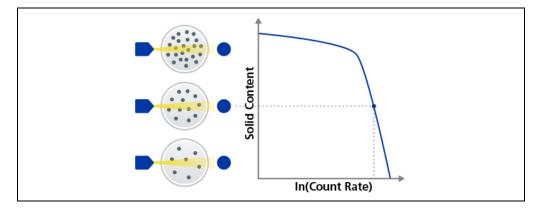


Fig 73 1-Point calibration (Solid Content).

The user must record one calibration point($I_M|M$). If the parameters c_0 and c_1 are known, they can be entered directly. The free parameter c_2 can then be determined analytically. If c_0 and c_1 are not known, they can also be calculated. To do so, the mass attenuation coefficient μ , the measurement path d, the density of the liquid phase ρ_L as well as the solid phase ρ_S must be known:

$$c_0 = \frac{\rho_S}{\rho_S - \rho_L}$$
$$c_1 = \frac{\rho_S \cdot \rho_L}{\rho_S - \rho_L} \cdot \mu d$$
$$c_2 = \frac{c_1}{M - c_0} - \ln(I_M - I_{BG})$$

2-Point calibration

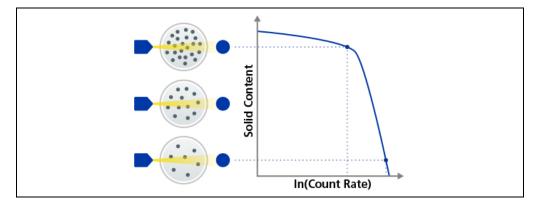


Fig 74 2-Point calibration (Solid Content).

The user must record two calibration points $(I_M|M)$ and enter an additional coefficient c_0 . If the parameter c_0 is not known, it can be determined from the density of the liquid phase ρ_L and the density of the solid phase ρ_S as follows:

$$c_0 = \frac{\rho_S}{\rho_S - \rho_L}$$

Die freien Parameter der hyperbolischen Kennlinie c_1 und c_2 werden analytisch bestimmt

$$c_1 = (M_1 - c_0) \cdot (M_2 - c_0) \cdot \frac{\ln(I_1 - I_{BG}) - \ln(I_2 - I_{BG})}{M_2 - M_1}$$

$$c_2 = (M_1 - c_0) \cdot \frac{\ln(I_1 - I_{BG}) - \ln(I_2 - I_{BG})}{M_2 - M_1} - \ln(I_2 - I_{BG})$$

Direct entry

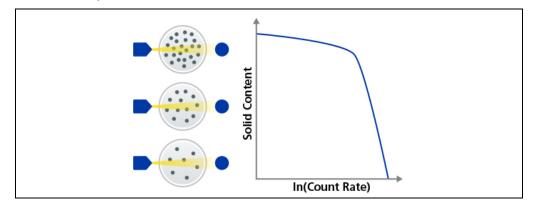


Fig 75 Direct entry (Solid Content).

If the coefficients of the calibration equation are known, they can also be entered directly. This is the case, for example, when the measurement has already been calibrated once, and the coefficients from the previous calibration can be reused. When selecting direct input, valid coefficients such as $c_0 > 1$, $c_1 > 0$, $c_2 > 0$ must be provided. When determining the solid content, a fixed number of parameters must be entered due to the established hyperbolic dependence.

3.7 Menu: Security

- 3.7.1 Submenu: Security | Authentification
- 3.7.1.1 Tab: Security | Authentification | Authentification

		ß				
LB_430_De Berthold	nsity					
Online Parametrization Identification						
Device/Modules Assistant QuickStart Assistant	Authentication Device Header Digital Value	3.68 g/cm ³			GERTHOLD	
Application Assistant 📃 Signal AddOns Assistant 📃	Analog Value	20.0 mA				
Setup Device Application Communication Security Authentication HART Specific Access	Locking Status Hardware locked Temporarily locked Software locked Software locked Temporarily Hert master locked Permanent Hart master locked		Actions Access Level	Maintenance · ·		
	<					
					Apply Revent	Close

Fig 76 Tab: Security | Authentification | Authentification.

The **"Authentication"** tab is used for password entry and locking the device to prevent configuration changes. A password must be entered to lock the detector against unauthorized access. Locking restricts access to adjustable parameters.

To unlock the device, the password must be re-entered. Multiple locks can be active simultaneously, depending on the desired security level of the device:

Write Protection	Description
Hardware locked	Dip switches in the connection compartment must be set to the "locked" position. Write protection can only be de- activated within the connection compartment.
Temporarily lo- cked	The device is temporarily write-protected. Write protec- tion can be unlocked with a "System Reset" or by restart- ing the device.
Software locked	Same effect as hardware lock. It can only be unlocked via "Security HART Specific Access" using the "Lock/Unlock Device" option.
Exclusive Access Active	Password protection has been activated in the "Security Authentication" menu. The respective user levels require a password to disable write protection for the parameters they have access to.
Backup/Restore active	During a backup and restore process, the device is write- protected to prevent corruption of the output or input files.
Temporarily HART Master lo- cked	Important for measurement cascades. The write protec- tion can only be removed by restarting the HART Master unit.

The device lock against unauthorized access must first be activated. The shipping package includes the Device-ID-dependent passwords for the access levels "Operator" (read access) and "Maintenance" (write access) for the specific device.

After activation, each access to the device must be confirmed with the assigned password. If there is no interaction for 20 minutes, the device will automatically switch to write-protected mode.

NOTICE

The device can also be operated without activating the security levels. However, unauthorized write access to the device is possible at any time in this mode.

IMPORTANT

A loss of the supplied passwords may result in the inability to access the device. In this case, please contact Berthold Service. They can provide you with a new password.

- 3.7.2 Submenu: Security | HART Specific Access
- 3.7.2.1 Tab: Security | HART Specific Access | HART Specific Access

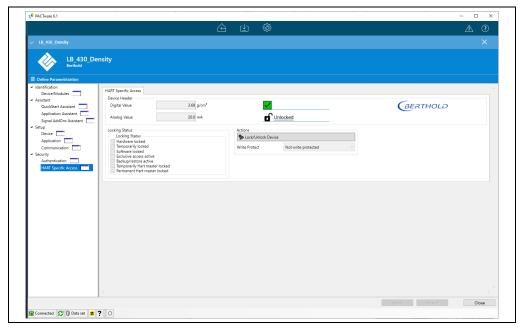


Fig 77 Tab: Security | HART Specific Access | HART Specific Access.

This tab is used to activate/deactivate the software lock (see Chapter 3.7.2.1 – "Software locked"). If authentication is enabled, entering the respective password for the user level is required to unlock the device.

4

Main Menu: Offline Parameter

4.1 Accessing the Main Menu: Offline Parameter

Access to the device's online parameterization is done through the main menu tree of the respective connected application. In PACTware 6.1, right-click on the "Parameter" option and then select "Parametrization." Please note that the layout of the main menus for accessing the application may differ across all HOST systems.

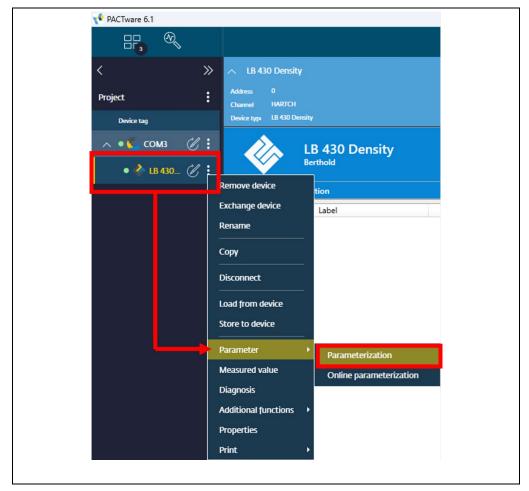


Fig 78 Accessing the Offline Parameter List in PACTware 6.1.

4.2 Backup - Transferring Device Settings to the Offline Parameter List

The transfer of device settings to the offline parameter list of the HOST system is done through the main menu tree of the respective connected application. In PACTware 6.1, right-click on the "Load from device" option. The device settings will then be transferred to the offline parameter list. You can track the progress via a progress bar under the connected application (Fig. 79, Pos. 1). Please note that the layout of the main menus for accessing the application may differ across all HOST systems.

NOTICE

Only one parameter set from a device can be transferred to the offline parameter list at a time. If a factory reset is performed, the data in the offline parameter list will also be lost.

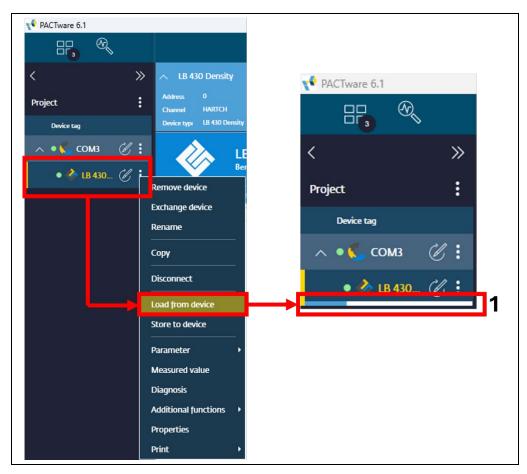
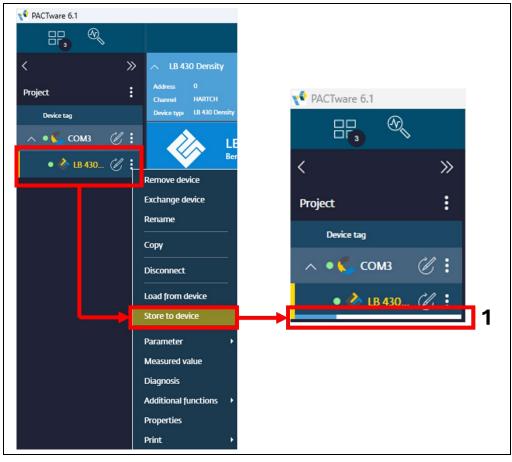



Fig 79 Transferring Device Settings to the Offline Parameter List in PACTware 6.1.

4.3 Restore - Transferring Device Settings from the Offline Parameter List

The transfer of device settings from the offline parameter list of the HOST system to the device is done through the main menu tree of the respective connected application. In PACTware 6.1, right-click on the "Store to device" option. The device settings will then be transferred from the offline parameter list to the device. You can track the progress via a progress bar under the connected application (Fig. 80, Pos. 1). Please note that the layout of the main menus for accessing the application may differ across all HOST systems.

Fig 80 Transferring Device Settings from the Offline Parameter List to the Device in PACTware 6.1.

4.4 Parameter-Report

To create a parameter report, first navigate to the main menu of Offline Parameters, as described in Chapter 4.1 of this manual. The offline menu will open, where you can view the complete device settings (Fig 81, Pos. 1). To create a report, click the "Offline Report" button (Fig 81, Pos. 2). This will open the routine for generating a parameter report (Fig 81, Pos. 3).

		♦ - Offline Report ×
Contract Con		BERTHOLD
Label Offline	Value Units	Offline Parameter Report Generation
Offline Report Process I Identification	Offine Report 2	The export includes all information's which are included in the offline menu. Data format is XML which shows parameter groups with list of parameters where each parameter has name, value and unit. Before actual Export operation, data can be previewed.
> Configuration		File format for Report User name SAVE REPORT
 ▶ Security ▶ Diagnostic 		PDF V
		PDF Excel
		<pre>devicable size-'fflip.jprotection(sup)/filedevicable' smufacturer*#EFFGU' deviceType*L4.48 besity' deviceType deviceSize smarthering.jprotect, test: heal-'frecess' devices.jprotection(sup)/filedevicable' heal-'frecess' devices.jprotection(sup)/filedevicable' heal-'frecess' devices.jprotection(sup)/filedevicable' heal-'frecess' devices.jprotection(sup)/filedevicable' heal-'frecess' devices.jprotection(sup)/filedevicable' heal-'frecess' devices.jprotection(sup)/filedevicable' devices.jprotection(sup)/filedevicabl</pre>

Fig 81 Creation of a Parameter Report.

Using this routine, the offline parameter set can now be saved as a PDF, Excel, or XML file on the PC.

Tip

The parameter reports can be ideally used as commissioning protocols for the measurements. To do this, after each commissioning, save the data in the offline parameter set as described in *Chapter 4.2 – Backup – Transferring Device Settings to the Offline Parameter List*. Create an additional PDF or Excel file for better readability, as well as an XML file in case device parameters need to be easily restored later.

4.5 **Procedure for Duplicating Measurement Points**

To duplicate measurement points, proceed as follows:

- 1. Parameter and calibrate the first device.
- 2. Transfer the device settings to the offline parameter list as described in Chapter 4.2 of this manual. These settings will then be saved on the HOST system.
- 3. Connect the next device to the HOST system.
- 4. Load the device settings from the offline parameter list onto the newly connected device, as described in *Chapter 4.3 Restore Transferring Device Settings from the Offline Parameter List to the Device*.
- 5. Calibrate the newly connected device.

Tip

If measurement points with different parameter configurations need to be duplicated, save an XML file for each different device configuration, as described in *Chapter 4.4 – Parameter Report*. This allows you to easily switch between different offline parameter sets.

5

Main Menu: Measurement

5.1 Accessing the Main Menu: Measurement

The entry into the device's measurement menu is done through the main menu tree of the respective connected application. In PACTware 6.1, right-click on the "Measured value" option. Please note that the layout of the main menus for accessing the application may differ across all HOST systems.

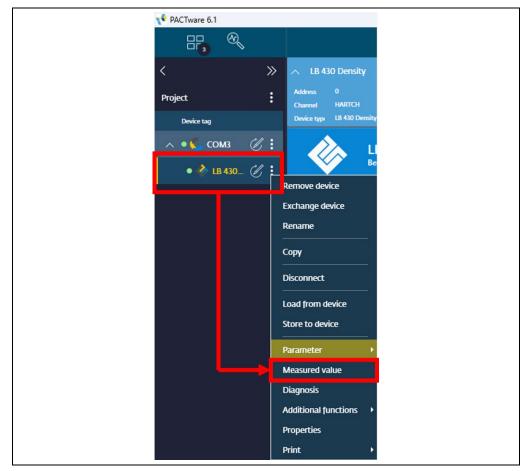


Fig 82 Accessing the Measurement Main Menu in PACTware 6.1.

5.2 Menu: Process Values

- 5.2.1 Submenu: Process Values | Process Values
- 5.2.1.1 Tab: Process Values | Process Values | Process Values

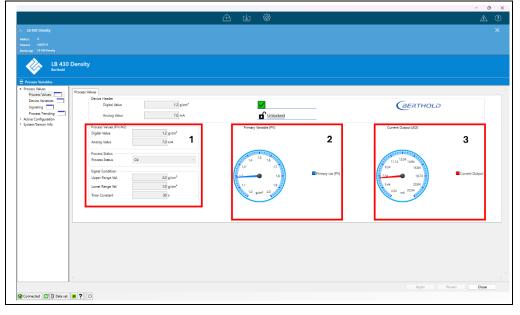


Fig 83 Tab: *Process Values | Process Values | Process Values* for the density application.

LB 430 Level Measured value sense 0 annet HAUSCH ica upp 18 480 Level LB 430 Leve	rel		
Process Variables Process Values Process Values Process Values Process Values Process Values Process Values Process Trending	ones Weier Decer Header Depit Wale 85.15 % Ansig bible 175 mA	Uniocked	GERTHOLD
System Sensor Info	Process Values (FVIAC) Digit Value Anatog Value Process Satut Process Satut Process Satut Ok Signal Condition Cuper Range Val. Learne Tatage Val. Time Constant 200 s	Primery Variable (PV)	Current Durgut (40) 3 534 534 534 535 535 535 535 535 535 5

Fig 84 Tab: *Process Values | Process Values | Process Values* for the level application.

In the tab **"Process Values"**, you will find an overview of all critical parameters in your process. The display varies depending on the selected application. If the density application is active, the tab will appear as shown in Fig 83, whereas for an active level application, the tab will appear as shown in Fig 84.

This tab includes current process values, current output values, and measurement range settings displayed both as numerical values (Fig 83 and Fig 84, Pos. 1) and

graphically, showing the digital process value (PV, Fig 83 and Fig 84, Pos. 2) and the analog output value (AO, Fig 83 and Fig 84, Pos. 3).

5.2.2 Submenu: Process Values | Device Variables

5.2.2.1 Tab: Process Values | Device Variables | Device Variables

I HARTCH War LB 430 Dernity								
LB 430 Den Berthold	sity							
ecess Variables ess Values								
Process Values 📩 Dev	ice Variables Mapping							
Device Variables	Device Header Digital Value	1.2	g/cm ¹				GERTHOLD	
Process Trending	Analog Value		mA	-	nlocked		BERNIOLD	
ve Configuration em/Sensor Info						_		
	Primary Variable (PV) PV is	Density	1	- Secondary Variable (SV) SV is	Aug. Rate	2		
	Digital Value		12	Digital Value		61.8		
	Actual Unit	g/cm ²	~	Actual Unit	cps	~		
	Data Quality	Good	~	Data Quality	Good			
	Upper Range Val.		2.0	Upper Range Val.		1000000000.0		
	Lower Range Val.		1.0	Lower Range Val.		0.0		
	· Tertiary Variable (TV)		3	Quatenary Variable (QV)		4		
	TV is	Live Rate	~	QV is	Det. Temperature	<u> </u>		
	Digital Value		46.0	Digital Value		23.6		
	Actual Unit	cps	~	Actual Unit	°C	~		
	Data Quality	Good	~	Data Quality	Good			
	Upper Range Val.	10	0.00000000	Upper Range Val.		125.0		
	Lower Range Val.		0.0	Lower Range Val.		-40.0		

Fig 85 Tab: Process Values / Device Variables / Device Variables.

In the **"Device Variables"** tab, you can access information about each of the HART variables:

- PV (Primary Variable, Fig 85, Pos. 1)
- SV (Secondary Variable, Fig 85, Pos. 2)
- TV (Tertiary Variable, Fig 85, Pos. 3)
- QV (Quaternary Variable, Fig 85, Pos. 4)

Here, you will find details about the current assignment, digital value, configured unit, and the spanned measurement range. Additionally, the data quality of the ongoing measurement for each variable can also be retrieved.

5.2.2.2 Tab: Process Values | Device Variables | Mapping

LB 430 Dens Berthold	ity					
Process Values Process Values Process Values Process Values Device Values Signaling Process Tending Active Configuration System/Sensor Info	e Variabiles Mepping Device Header Digital Value Analog Value PV PV is	12 g/cm ¹ 72 mA	1 2	Unlocked	(BERTHOLD	
	Digital Value SV SV is Digital Value TV TV is Digital Value	12 grow ³ 1 Aug. Rate V Density Switch Density SV Aug. Rate M Live: Rate M Det: Temperature 650 cps	is pping of the HART variable SV to any di	2 pital measure.		
	QV QV is Digital Value	Det Temperature v 22.6 °C				

Fig 86 Tab: Process Values | Device Variables | Device Variables.

Through the **"Mapping"** tab, you can view the variable assignments as well as the digital variable values (Fig 86, Pos. 1). If needed, the assignment of each HART variable can be adjusted via a drop-down menu (Fig 86, Pos. 2).

5.2.3 Submenu: Process Values | Signaling

Device type UE 400 Devicely LB 4300 Berthold	Density		
Process Variables			
Process Values Process Values Device Variables Signaling Process Trending	Signal Condition Signal Dependencies Device Header Digital Value 12 gr/cm ² Analog Value 7.0 (mA		GERTHOLD
Excluse Configuration E System/Sensor Info	Mask Skopp Linkt 2.1 g/m² Upper Europe Linkt 2.0 g/m² Lower Europe Linkt 0.0 g/m² Upper Europe Vick 2.0 g/m² Upper Europe Vick 2.0 g/m²	Mass. Company Trine Constant 30/s 2	Mee loong Saling featur Saling Ofter <u>od</u> giunt [*]

5.2.3.1 Tab: Process Values | Device Variables | Signal Condition

Fig 87 Tab Process Values | Signaling | Signal Conditions.

In the tab **"Signal Condition"**, the calculated measurement range limits can be viewed, and settings for the defined measurement range can be adjusted (Fig 87, Pos. 1). Additionally, the settings for process value smoothing (Fig 87, Pos. 2) and measurement range scaling (Fig 87, Pos. 3) can also be configured here.

IMPORTANT

İ

The system needs approximately 3 times the time constants to represent 99% of the process change. This means that with a default setting of 20 seconds, a process change can be fully represented after about 60 seconds. Therefore, the choice of the time constant is always a compromise between response time and signal smoothing.

5.2.3.2 Tab: Process Values | Device Variables | Signal Dependencies

es 0 had HAUECO as type 18:400 Deemby LB 430 Do Berthold	ensity		
Process Variables	Signal Constitution Signal Dependencies Deute Hander Digital Volke Antoige Volke Record Direction Report Scholton Report Scholton Record Hanh State Devalled Factor Tigger Statution Direction	To mA Constant of Undoced	CERTHOLD Sorre Fighterer Refication Dealted 3 -

Fig 88 Tab: Process Values / Signaling / Signal Dependencies.

In the **"Signal Dependencies"** tab, you can configure settings for signal extensions, such as Rapid Switch (Fig 88, Pos. 1) or X-Ray Interference Protection (XIP, Fig 88, Pos. 2).

Additionally, the "Source Replacement Notification" (Fig 88, Pos. 3) can be activated here to indicate when an aging radiation source needs to be replaced in a timely manner. Changes made in this menu directly affect the active measurement.

Rapid Switch	The activation of the rapid switch function is recom- mended when process values can change very quickly and sporadically (e.g., slurry detection in boreholes). When such a rapid process change is detected, the fast switching is automatically activated and sets the time constant to 1/10 of the set value, allowing the control unit to react more effectively to this process change. When activating fast switching, only the sigma value needs to be defined. This specifies the factor by which the count rate must change within two output cycles to activate the rapid switch function.
	Example calculation: The default value for sigma is 4.0, meaning the count rate must increase or decrease by a factor of 4 within two measurement cycles to activate fast switching.

XIP

XIP - short for "X-Ray Interference Protection," describes
an internal function of the detector that detects stray ra-
diation and protects both the measurement and the de-
vice from such interference. This function is particularly
important when, for example, welding inspections are
frequently carried out at the installation site. When stray
radiation is detected with the XIP function activated, the
detector will stop measuring for a certain period, and the
measurement value will be frozen. This ensures that both
the internal decay compensation and the measurement it-
self are not affected. Additionally, the detector is effec-
tively protected from premature aging.

To activate the XIP function, the following settings must be made:

- 5) **Delay Time**: Specifies the time after which XIP should be triggered when stray radiation is detected. The default value is set to 4 seconds.
- 6) **Freezing Time**: Specifies the time the measurement value should remain frozen after the delay time. A default of 20 seconds is recommended.
- 7) **Sigma Factor**: Defines a process signal-dependent count rate at which XIP should be activated.
- 8) Interference Factor: Defines a process signal-dependent threshold count rate at which XIP should be deactivated after the freezing time.

5.2.4 Submenu: Process Values | Process Trending

5.2.4.1 Tab: Process Values | Process Trending | PV/SV

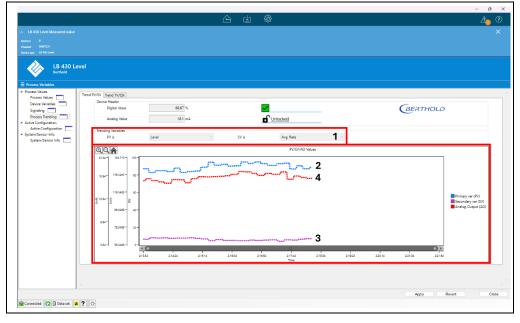


Fig 89 Tab: Process Values | Process Trending | PV/SV.

In the **"PV/SV"** tab, you can view the assignment settings of the respective variables (Fig 89, Pos. 1). Additionally, the temporal progression of the device variables PV (Primary Variable, Fig 89, Pos. 2) and SV (Secondary Variable, Fig 89, Pos. 3), along with the progression of the current signal (Analog Output, Fig 89, Pos. 4), is displayed graphically.

5.2.4.2 Process Values | Process Trending | TV/QV

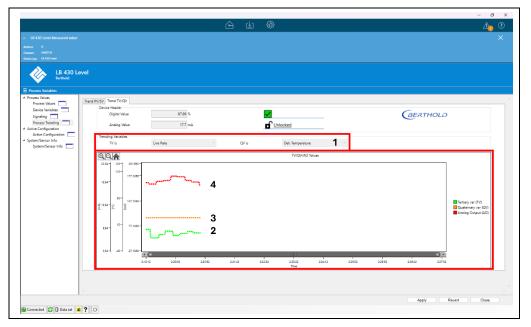
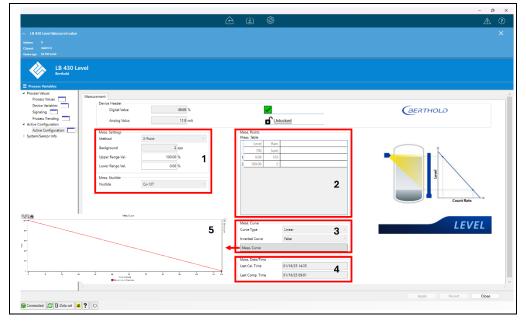



Fig 90 Tab: Process Values | Process Trending | TV/QV.

In the **"TV/QV"** tab, you can view the assignment settings of the respective variables (Fig 90, Pos. 1). Additionally, the temporal progression of the device variables TV (Tertiary Variable, Fig 90, Pos. 2) and QV (Quaternary Variable, Fig 90, Pos. 3), along with the progression of the current signal (Analog Output, Fig 90, Pos. 4), is displayed graphically.

5.3 Menu: Active Configuration

- 5.3.1 Submenu: Active Configuration | Active Configuration
- 5.3.1.1 Tab: Active Configuration | Active Configuration | Measurement

Fig 91 Tab: Active Configuration | Active Configuration | Measurement.

In the **"Measurement"** tab, you can view the current measurement configuration (Fig 91, Pos. 1), the calibration table (Fig 91, Pos. 2), and the calibration curve settings (Fig 91, Pos. 3) based on the device's current calibration.

Additionally, you can check when the device was last calibrated and when the last decay compensation was performed (Fig 91, Pos. 4). Clicking the **Meas. Curve** button calculates and displays the currently used calibration curve (Fig 91, Pos. 5).

- 5.4 Menu: System/Sensor Info
- 5.4.1 Submenu: System/Sensor Info | System/Sensor Info
- 5.4.1.1 Tab: System/Sensor Info | System/Sensor Info | System/Sensor Info

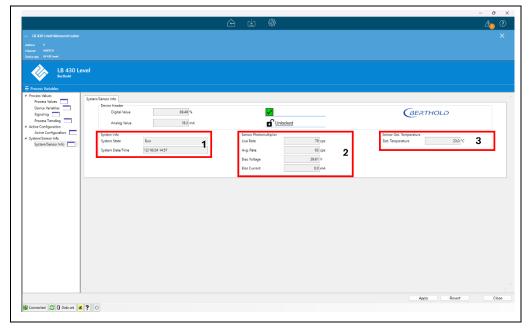


Fig 92 Tab: System/Sensor Info | System/Sensor Info | System/Sensor Info.

In the **"System/Sensor Info"** tab, you can access current information about the entire system. This includes the device status and the current system time (System Info, Fig 92, Pos. 1), the count rates, voltages, and currents (Sensor Photomultiplier, Fig 92, Pos. 2), as well as the detector temperature (Sensor Det. Temperature, Fig 92, Pos. 3).

6

Main Menu: Diagnosis

6.1 Accessing the Main Menu: Diagnosis

Access to the diagnostics main menu is done via the main menu tree of the connected application. In PACTware 6.1, right-click on the "Diagnosis" option to open it. Please note that the layout of the main menus for accessing the application may vary across different HOST systems.

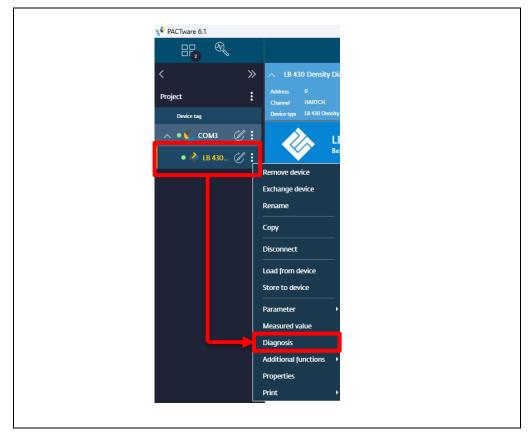


Fig 93 Accessing the Main Menu Diagnosis.

6.2 Menu: Device Status Events

6.2.1 **Tab: Device Status Events | Active Event**

In the **"Active Event"** tab, you can view information about the currently highestpriority active event. Each event is represented by a code (Fig 94, Pos. 1) in the following format:

F 000

The letter represents the "Condensed Status" according to NAMUR 107 (Fig 94, Pos. 2), and the three-digit code indicates the specific event code.

For each error message, the software provides a brief description (Fig 94, Pos. 3) as well as instructions (Fig 94, Pos. 4), which must be followed to ensure the smooth operation of the device.

In addition to the displayed event codes, a "Service ID" is also shown. This ID describes the underlying issue for Berthold Service and will not be further discussed in this operating manual.

LB 430 D Berthold	ensity				
Diagnostic					
Device Status Events		nt History Event Summary Event Mapping Event Simulation			
HART Specific	Device Header Digital Value	1.2 g/cm ²		GERTHOLD	
		69 mA	-C	BERMOED	
	Analog Value	6.9 mA	Unlocked		
	Active Event				
	Event Code	No event active			
	2 Event Status	Ok ···			
	Actions				
	3 Description	No description needed			
	↓ 4 Instruction	No instruction needed			

Fig 94 Tab: Device Status Events | Active Event.

6.2.2 Tab: Device Status Events | Event Overview

In the **"Event Overview"** tab, the currently active events of the device are displayed visually. This is particularly helpful when multiple events occur simultaneously. The "Device Specific Status 0 - 5" windows list the device-specific events, while the "Device Specific Status 6" window shows application-specific events, such as active alarms.

≣ Diagnostic				
Device Status Events Configuration History	Active Event Event Overview Event History Event Summary Event Mi	pping Event Simulation		
HART Specific	Device Header Digital Value 12 g/cm	· · · · · · · · · · · · · · · · · · ·	GERTHOLD	
	Analog Value 6.9 mA	Unlocked		
	Devis Specific Statu 1 B005 SP M Specific Statu 1 B005 SP M Specific Statu 1 B005 SP M Specific Statu 2 B005 SP M Specific Statu 2 B005 SP M Specific Statu 2 B005 Sector sentange Devis Specific Statu 2 B005 Sector Specific Statu 3 B005 Sector Spe	Device Specific Status 3 Biol Hit Visions Michael Conf algeet Biol Biol Hit Visions Michael Conf algeet Biol Biologic Restores and Restores Biol Biol Biol Restores and Restores Biol Biol Restores and Restores Biol Biol Restores and Restores Biol Biol Restores and Restores Biol Biol Biol Restores and Restores Biol Biol Biol Restores and Restores Biol Biol Restores and Restores Biol Biol Restores and Restores Biol Biol Biol Restores and Restores Biol Biol Biol Biol Biol Biol Biol Biol	Devis Specific Status 5 Oblis Sim current togo active Divis	

Fig 95 Tab: Device Status Events | Event Overview.

6.2.3 Tab: Device Status Events | Event History

In the **"Event History"** tab, you can view the device's event log, which lists individual events in chronological order when they are no longer marked as active events. The event log must first be loaded by clicking the **Refresh** button (Fig 96, Pos. 1) before it becomes accessible.

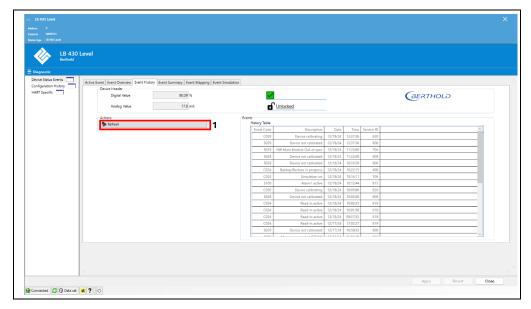
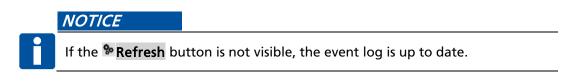



Fig 96 Tab: Device Status Events / Event History.

6.2.4 Tab: Device Status Events | Event Summary

In the **"Event Summary"** tab, a summary of all events reported by the device can be displayed. The "Event-ID" column shows all possible events for the device. The "Counter" column indicates how often each event has occurred. The "Date/Time In" and "Date/Time Out" columns provide information on when and for how long each event occurred. The *** Refresh** button (Fig. 97, Pos. 1) must first be clicked to update the summary.

Diagnostic											
Device Status Events	Active Event Event Overview Event History Ev	ent Summary Event Mapping Event Sim	ulation								
Configuration History	Device Header								-		
and showing	Digital Value	1.2 g/cm ⁸							BERTHO	LD	
	Analog Value	7.1 mA		Unlocked							
	Actions		Events Summary Table								
	Sp Refresh		Event-ID	Help	Counter	Date In	Time In	Date Out	Time Out		a
			000	SW Failure	0	//		//			
			001	HW System conflict	0	//		++/++/++			
			002	HW System Failure	0	//		//	**(**)**		
			003	HW System Malfunction	0	//		//			
			004	HW System Out of spec	0	**/**/**		//	*****		
			005	Memory corrupted (FRAM)	0	//		es/es/es			
			006	Safety parameter integrity	0	//		//		- 8	
			007	Source exchange	0			//	***		
			008	Terminal voltage too low	0	//		//			
			009	Terminal voltage too high	0	**/**/**					
			010	Temperature limit warning	0	enfanfan		anfenfen	angangan -		
			011	Temperature limit alarm	0			//			
			012	CurrentLoop failure	0	**/**/**		//	1000		
			013	Module communication	0	**/**/**	**				
			014	HW Sensor Module Critical Failure	0	cofeefee	njopo	========			
			L out I	1941 C	·						-

Fig 97 Tab: Device Status Events / Event Summary.

If the ^{Se} Refresh button is not visible, the event summary is up to date.

6.2.5 Tab: Device Status Events | Event Mapping

Certain event IDs for the device can be customized in terms of their impact on the process. The configurable event IDs are marked with "Yes" in the "Configurable" column in *Chapter 6.3 – Device Specific Event Codes* and *Chapter 6.4 – Application Specific Event Codes*. This customization, known as "Event Mapping," is performed via the **"Event Mapping"** tab.

To start event mapping, click the ^{Se} Change Profile button (Fig 98, Pos. 1). In the drop-down menu, you can choose between the profiles "Standard," "SIL," and "Custom." Select **Custom** (Fig 98, Pos. 2) to apply individual settings.

For configurable events, an option will now appear where you can define the **Condensed Status** according to NAMUR 107 (Fig 98, Pos. 3) and specify how the event is handled in the process control system (Fig 98, Pos. 4).

- With Active, the status is reported to the process control system.
- With **No Effect**, the event is only displayed on the device and is not reported further.

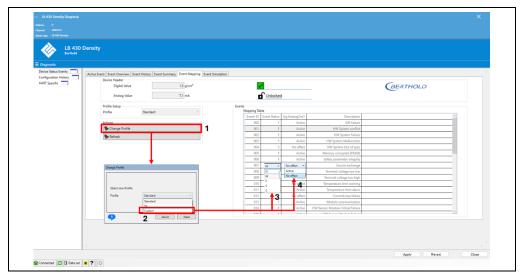


Fig 98 Tab: Device Status Events/Event Mapping.

6.2.6 Tab: Device Status Events | Event Simulation

In the **"Event Simulation"** tab, all possible events can be simulated. This includes both the device signaling and the effect on the current output. While the simulation mode is active, the device sends the NAMUR status "Check Function" to the process control system until the mode is manually deactivated or the device is restarted.

To start or stop the simulation mode, click the **Enable/Disable Simulation** button. In the event list, you can select "Active" or "Not active" for each event in the drop-down menu. The simulation of an event starts when you choose the "Active" option.

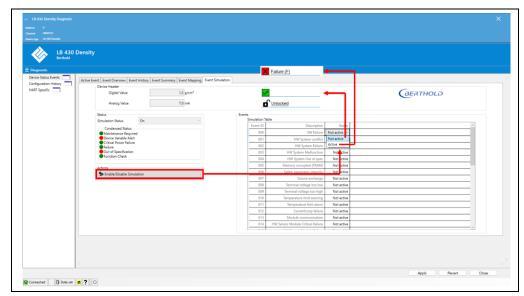


Fig 99 Tab: Device Status Events | Event Simulation.

6.3 **Device Specific Event Codes**

Event messages can influence the device status. The transmitted NAMUR status may depend on the event mapping profile (see Chapter 6.1.6 of this manual – Device Status Events | Event Mapping). For example, an event might send the status **"Out of Specification" (S)** in standard mode, while transmitting **"Failure" (F)** in safety mode.

Symbol	Name	Description
Ν	No effect	The event is not considered for the device status.
S	Out of specification	One or more parameters are outside the specified limits.
м	Maintenance required Maintenance required, e.g., replacement of the radiation source.	
С	Function check	Routine in progress, e.g., calibration.
F	Failure	Hardware or software error detected. The measurement is affected.

Co	ode			
Mode Stan- dard	Mode Safety	Message	Configurable	Description/Istruction
F000	F000	SW Failure	No	 Software issues with timing, data exchange, faulty RAM, or the device module cannot be contacted. The device enters the safety mode, and the measurement is stopped. Perform a restart. If the problem persists, contact Berthold Service.
F001	F001	HW System Conflict	No	 Hardware compatibility issues, e.g., after installing incompatible modules. The device enters the safety mode, and the measurement is stopped. Contact Berthold Service.
F002	F002	HW System Failure	No	Faulty hardware component. The device enters the safety mode, and the measurement is stopped.Contact Berthold Service.
F003	F003	HW System Malfunc- tion	No	 Faulty hardware component, but the measurement is not inter- rupted. This directly affects the de- cay compensation of the count rates and calibration data. Reset the system time and re-
				start the device via a system re- set. If the issue persists, contact Berthold Service.

S004	S004	HW System Out of spec	Yes	Watchdog jumper set to "Off." • Contact Berthold Service.
F005	F005	Memory corrupted (FRAM)	No	 The data record is invalid/cor- rupted, possibly due to a software update or failed write operation. The device enters the safety mode, and the measurement is stopped. Perform a repair reset and then restart the device with a system reset. If the issue persists, per- form a factory reset and restart the device with a system reset. If the error continues, contact Berthold Service.
M007	M007	Source exchange	Yes	 Message indicating when the radiation source needs to be replaced. This is dependent on the selected nuclide and its associated half-life. To replace the radiation source, contact Berthold Service.
F008	F008	Terminal voltage too low	No	 Terminal voltage too low. The device enters a safety mode, and the measurement is stopped. Check the applied terminal voltage. It must be above 14 V. If necessary, increase the terminal voltage.
S009	S009	Terminal voltage too high	No	 Terminal voltage too high. There is a risk of overvoltage to the device. Check the applied terminal voltage. It should be below 30 V. If necessary, decrease the terminal voltage.
5010	S010	Temperature limit warning	Yes	 The device is approaching the temperature limit. Check the ambient temperature and reduce it if possible. If necessary, use water cooling to reduce the temperature increase.
F011	F011	Temperature limit alarm	No	 Outside of the valid temperature range. The device enters the safety mode, and the measurement is stopped. Check if the device is operating within the specified limits. Restart the device with a system reset. If necessary, use water cooling to reduce the temperature increase.

F012	F012	CurrentLoop failure	No	 Error in the process-relevant current output. The current output is not reliable at this moment. Fault currents may not be transmitted to the process control system. Contact Berthold Service.
F013	F013	Module communica- tion	No	 Communication issues at the module level, faulty data exchange between two modules (e.g., LB 430 sensor and display). Perform a restart via a system reset. If the issue persists, contact Berthold Service.
F014	F014	HW Sensor Module Critical Failure	No	Critical error in the sensor module. The device enters the safety mode, and the measurement is stopped. • Contact Berthold Service.
F015	F015	HW Sensor Module Failure	No	Error in the sensor module. The device transmits a fault current. Contact Berthold Service.
S016	S016	HW Sensor Module Out of spec	Yes	 Sensor module outside the specification limits, e.g., triggered by the watchdog. The device transmits a fault current. Perform a system restart via the system reset and contact Berthold Service.
F017	F017	HW Main Module Crit- ical Failure	No	Critical error in the main module. The device enters the safety mode, and the measurement is stopped • Contact Berthold Service.
F018	F018	HW Main Module Fai- lure	No	 Error in the main module. Triggers the watchdog in any case. A fault current is transmitted. Perform a system restart via the system reset and contact Berthold Service.
S019	S019	HW Main Module Out of spec	Yes	Main module (processing unit) outside the specification limits. • Contact Berthold Service.
M023	M023	Sensor maintenance	Yes	Measurement outside of specifica- tions. • Contact Berthold Service.
C024	F024	Backup/Restore in pro- gress	Yes	Backup/Restore process active.No action required.
F025	F025	Backup/Restore failed	Yes	 Backup/Restore process was interrupted. Check the device connection and restart your backup/restore process. If the issue persists, contact Berthold Service.

S026	F026	Backup/Restore not complete	Yes	 Backup/Restore compatible, but incomplete. This may occur when restoring device settings after a software update, especially if additional parameters are made available with the software update. Compare the software versions at the time of the backup and the time of the restore. It is advisable to create a backup after
F027	F027	Backup/Restore incom- patible	Yes	 every software update. Conflict of software versions between the device and the backup file. This occurs only if the detector software is more recent than at the time of the backup. Newly added parameters cannot be restored because they are not present in the backup file. Manually configure the device and create a new backup.
F028	F028	Backup/Restore unit mismatch	Yes	 The unit in the backup does not match the device's configured units (e.g., g/cm³ <-> kg/m³). Adjust the units on the device according to the information in the backup file and restart the restore process.
S029	S029	Device not calibrated	No	Device not calibrated. Calibrate the device.
C030	C030	Device calibrating	No	The device is being calibrated. • No action required.
S031	S031	XIP	Yes	 Interference radiation detected. The measurement value is frozen. No action required. If the XIP mode persists for too long or is continuously reported, contact Berthold Service.
M032	M032	Decay compensation malfunction	No	 Error in compensation of the detector parameters for the decay of the radiation source. Check if the system time is correctly set. Verify the compensation timestamp, which should be updated daily. If necessary, reset the system time and recalibrate the device. If the issue persists, contact Berthold Service.
C033	C033	Simulation on	No	Simulation is active. The measurement is affected by this.If necessary, exit the simulation mode or restart the device.

C034	C034	Read-In active	Yes	Background count rates / calibration points are being read.No action required.
C035	C035	Trim current active	No	The current output is being calibrated.No action required.

6.4 Application Specific Event Codes

In addition to device-specific event codes, the system also supports application-specific events. These are used for signaling alarms or executing routine-specific tasks.

6.4.1 Application Level

Co	ode			
Mode Stan- dard	Mode Safety	Message	Configurable	Description/Instruction
S100	S100	Alarm1 active	Yes	 Alarm 1 is active. Depending on the individual settings, check the affected process variable.
S101	S101	Alarm2 active	Yes	 Alarm 2 is active. Depending on the individual settings, check the affected process variable.
S102	S102	AlarmSwitch active	Yes	 The switch alarm is active. Depending on the individual settings, check the affected process variable.
N103	N103	Level underflow	Yes	 Level < 0%. The calibration may be incorrect. Please check the calibration. Check for possible interference radiation.
N104	N104	Level overflow	Yes	 Level > 100%. The calibration may be incorrect. Please check the calibration. Check if the radiation source is closed. If necessary, open the shutter of the shield.
S105	S105	Rapid Switch active	Yes	Fast switching is active. The time constant will automatically be set to 1/10 of the configured value for rapid process changes. This is only applicable if compatible with the time constant of the host system.
C106	C106	Adjust active	Yes	The calibration curve is being ad- justed. This is applicable after re- placing the radiation source or when de-calibrating wall deposits.

6.4.2 Application Density

Co	ode			
Mode Stan- dard	Mode Safety	Message	Configurable	Description/Instruction
				Alarm 1 is active.
S100	S100	Alarm1 active	Yes	 Depending on the individual settings, check the affected pro- cess variable.
				Alarm 2 is active.
S101	S101	Alarm2 active	Yes	 Depending on the individual settings, check the affected process variable.
				The switch alarm is active.
S102	S102	ApplicationAlarm ac- tive	Yes	 Depending on the individual settings, check the affected process variable.
				The process variable (PV) is below the set measurement range.
N103 I	N103 PV underflow Yes rect. Please tion.	 The calibration may be incor- rect. Please check the calibra- tion. 		
				 Check if the cause lies within the process and, if necessary, ad- just the measurement range.
				The process variable (PV) is above the set measurement range.
N104	N104	PV overflow	Yes	 The calibration may be incor- rect. Please check the calibra- tion.
				• Check if the cause lies within the process and, if necessary, adjust the measurement range.
\$105	S105	Rapid Switch active	Yes	Fast switching is active. The time constant will automatically be set to 1/10 of the configured value for
5105				rapid process changes. This is only applicable if compatible with the time constant of the host system.
				The measured count rate after background compensation is < 2 cps.
F106	F106	Insufficient Meas. Countrate	Yes	• Check if the background count rate is correctly set and whether the shutter of the radiation source is opened. If the issue persists, contact Berthold Ser- vice.

6.5 Menu: Configuration History

6.5.1 **Tab: Configuration History | Configuration History**

In the configuration log under the **"Configuration History"** tab, all changes to the device parameters are recorded. The log contains 35 entries, and when new changes occur, the oldest entries are removed. The complete deletion of the entries can only be done by Berthold Service, but this is generally not necessary. The counters can be reset using the **Preset Counters** (Fig 100, Pos. 1) button.

Berthold	Density						
Diagnostic Device Status Events Configuration History	Configuration History HART Specific						
HART Specific	Device Header Digital Value 1.2 g/cm ⁸					BERTHOLD	
	Analog Value 7.1 mA	- -	Unlocked			BERTHOLD	
			OTIOCKUC.				
	Configuration Counters Config Counter Total 94	Changelog Changelog Tab					
		Date / 1		Operation	Unit		
	Last Change Date 12/12/24 16:44	12/12/24 1	20 calibrate	0			
	Config Counter HART 94	12/12/24 1					
	Actions	12/12/24 1					
	Records	12/12/24 1					
		12/12/24 1					
		12/12/24 1 12/12/24 1		0.000000 => 1.799999	g/cm ² cps		
		12/12/24 1		0.000000 => 5.000000	cps cps		
		12/12/24 1			Gp.s		
		12/12/24 1			g/cm ²		
		Actions Se Refresh					
		So venem					

Fig 100 Tab: Configuration History / Configuration History.

6.5.2 Tab: Configuration History | HART Specific

The counters for HART-specific configurations, such as address changes, can be reset in the **"HART Specific"** tab by clicking the **Reset Change Flag HART** (Fig 101, Pos. 1) button.

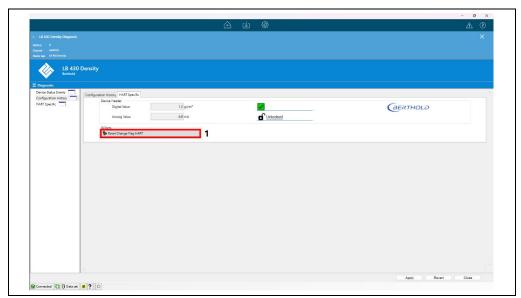


Fig 101 Tab: Configuration History | HART Specific.

6.6 Menu: HART Specific

6.6.1 **Tab: HART Specific | HART Diagnostics**

In the tab **"HART Diagnosis"**, you can view the HART-specific diagnostics. Here, events such as "Simulation Active" are displayed to indicate that the simulation mode (for measurements or events) is active. This diagnostic information is generally not required for daily operation but serves as support for Berthold Service.

LB 430 De Berthold	insity		
ice Status Events	HART Diagnostics		
If Specific	Device Header Digital Value 1.2 g/cm ³ Analog Value 7.0 mA		GERTHOLD
	Ennoted Device State Marchene Repaired Schweit Installe Alert Schweit Installe Alert Schweit Installe Schweit Schweit Installe Charl at Marchene Schweit Installe Schweit State Schweit State Schweit Schweit Schweit Schweit Schweit Schweit Schweit Schweit Schweit	Brandwater Stan 0 Once Valuats Simulation Active Once Valuats Simulation Active Once Valuats Simulation Active Once Valuats Simulation Once Configuration Scheme Once Configuration Once Con	

Fig 102 Tab: HART Specific | HART Diagnostics.

Subject to changes due to technical advancements.

© BERTHOLD TECHNOLOGIES GmbH & Co. KG 01/2025

Language: English Rev. No.: 00

printed in Germany

BERTHOLD TECHNOLOGIES GmbH & Co. KG

Calmbacher Str. 22 75323 Bad Wildbad Germany www.berthold.com